

3. Enter the Hostnames or IP addresses of two or three nodes in the cluster and set the JMX set JMX and Thrift
ports and credentials.

4. After connecting to the cluster, start installing the agents by clicking the Fix link located near the top of the
Dashboard.

5. In the Install Node Agent dialog, click Enter Credentials.

Installing OpsCenter agents

10

6. In the Node SSH Credentials dialog, enter a Username that has root privileges or sudo access to all of the nodes
in your cluster, plus any other required credentials, and then click Done.

7. In the Install Nodes Agent dialog, click the Install on all nodes.

8. If prompted, click Accept Fingerprint to add a node to the known hosts for OpsCenter.

It takes a few minutes for OpsCenter to complete the agent installations. After all agents are installed, a success
message is displayed.

Next steps

Installing OpsCenter agents

11

• Adding custom variables to agents

• OpsCenter and OpsCenter agent ports

Manually deploying agents - Tarball installations
When you install OpsCenter using a tarball distribution, the agent for that OpsCenter is installed automatically as part of
the OpsCenter installation process. You can manually install agents on other nodes running tarball installations of
Cassandra or DataStax Enterprise clusters. Use the agent.tar.gz file to manually deploy the agents to multiple
nodes in a cluster. This file is installed in the OpsCenter installation folder after you start OpsCenter.

Prerequisites

• Your Cassandra or DataStax Enterprise cluster is up and running.

• OpsCenter is installed and configured on a node in the cluster.

• JMX connectivity is enabled on each node in the cluster.

• SYSSTAT Utilities (needed for the collection of I/O metrics).

Installing agents
To install agents in a tarball installation:

1. Copy the agent tar file from your existing OpsCenter installation directory to your cluster node. For example, to
copy to the install location:

$ cd <install_location>
$ scp agent.tar.gz <user>@<node_IP>:/<install_location>

Note
The agent.tar.gz file is not created until you run OpsCenter for the first time.

2. Log in to the node, copy the agent.tar.gz file to the desired location, and unpack it. For example:

$ ssh user@<node_IP>
$ cd <install_location>
$ tar -xzf agent.tar.gz

The binary package creates and agent directory containing the installation files.

Manually deploying agents - Tarball installations

12

3. Configure and start the agent:

a. If needed get the IP address of the OpsCenter host. On the node containing the OpsCenter:

$ hostname -i

b. On the node where you are installing the agent, go to the agent directory:

$ cd agent
$ bin/setup <opscenter_host>

Note
Generally the agent can detect the listener IP address for the node, which is the IP address displayed for
node by running nodetool ring -h localhost. If needed, add <node_listen_address> to the
above command.

4. Start the OpsCenter agent:

$ bin/opscenter-agent (in the background - default)

$ bin/opscenter-agent -f (in the foreground)

Next steps

• Adding custom variables to agents

• OpsCenter and OpsCenter agent ports

Manually deploying agents - Packaged installations
If you installed OpsCenter on a cluster node using a package, you can deploy agents on other supported CentOS,
Debian, OEL, RHEL, or Ubuntu nodes.

Use this method to deploy the agents:

• If you do not need an SSH connection between the agents and the OpsCenter machine.

• If you want to install the agents as part of your node deployment process.

Because this method uses the agent packages, it requires sudo access. After installation, the agent runs as a service
that starts when the machine boots up and restarts automatically.

Prerequisites

• Your Cassandra or DataStax Enterprise cluster is up and running.

• OpsCenter is installed and configured on a node in the cluster.

• JMX connectivity is enabled on each node in the cluster.

• If you do not install using the agent Debian or RPM package, make sure that your nodes also have the SYSSTAT
utility installed (needed for the collection of I/O metrics).

Installing agents
To install agents in packaged installations:

Manually deploying agents - Packaged installations

13

1. On the OpsCenter machine, go to the opscenter directory:

$ cd /usr/share/opscenter

2. Copy the agent software to the home directory in your cluster node. For example:

$ scp agent.tar.gz <user>@<node_IP>:~/

3. Log in to the node, go to the home directory, and unpack it. For example:

$ ssh <user>@<node_IP>
$ cd ~/
$ tar -xzf agent.tar.gz

The binary package creates and agent directory containing the installation files.

4. If you have sudo access, installing the agent using the package is recommended:

a. If needed get the IP address of the OpsCenter host. On the node containing the OpsCenter:

$ hostname -i

b. On the node where you are installing the agent, go to the agent directory:

$ cd agent

c. Install the agent:

RHELCentOS: sudo bin/install_agent.sh opscenter-agent.rpm <opscenter_host>

DebianUbuntu: sudo bin/install_agent.sh opscenter-agent.deb <opscenter_host>

Note
Generally the agent can detect the listener IP address for the node, which is the IP address displayed for
node by running nodetool ring -h localhost. If needed, add <node_listen_address> to the
above command.

5. If you do not have sudo access:

a. If needed get the IP address of the OpsCenter host. On the node containing the OpsCenter:

$ hostname -i

b. On the node where you are installing the agent, go to the agent directory:

$ cd agent

c. Run the setup command and install the agent:

$ bin/setup <opscenter_host>

Note
Generally the agent can detect the listener IP address for the node, which is the IP address displayed for
node by running nodetool ring -h localhost. If needed, add <node_listen_address> to the
above command.

d. Start the OpsCenter agent:

$ bin/opscenter-agent (in the background - default)

$ bin/opscenter-agent -f (in the foreground)

Manually deploying agents - Packaged installations

14

6. Open a browser window and go to the OpsCenter console URL at http://<opscenter_host>:8888. For
example:

http://110.123.4.5:8888

Next steps

• Adding custom variables to agents

• OpsCenter and OpsCenter agent ports

Adding custom variables to agents
OpsCenter agents do not pick up the environment variables of the currently logged-in user by default. For example, if
Java is not in the machine's PATH, you may notice errors in the agent log on start-up. For example:

nohup: cannot run command 'java': No such file or directory

To correct, on the Cassandra nodes where the agents are installed, create the file
/etc/default/opscenter-agent and set the environment variables for JAVA_HOME and any other custom
environment variables that the agent may need. For example:

JAVA_HOME=/usr/bin/java

Adding custom variables to agents

15

Configuring OpsCenter
The following topics provide information about configuring OpsCenter:

Configuring user access
By default, access control is disabled. Any user that knows the OpsCenter URL can view all objects and perform all
tasks. To control access, you configure authentication for OpsCenter users by performing these tasks:

• Add users.

• Assign passwords.

• Set access roles using the set_passwd.py utility.

About access roles
OpsCenter provides two access roles: admin and user.

Admin role privileges

Users assigned the admin role can view all objects and perform all tasks. The following are tasks which may only be
performed by an admin:

• Alerts

• add

• delete

• modify

• Cluster operations

• add nodes to a cluster

• configure the cluster (all at once rather than a single node at a time)

• rebalance

• restart the cluster

• Column families

• add column metadata

• create

• delete column metadata

• delete index

• drop

• truncate

• modify

• Keyspaces

• create

• drop

• modify

Configuring OpsCenter

16

• Node

• cleanup

• compact

• configure

• decommission

• drain

• flush

• move

• perform garbage collection

• repair

• restart

• start

• stop

• Install the OpsCenter agent on Cassandra nodes

• OpsCenter configuration

• add an existing cluster to OpsCenter

• delete a cluster from OpsCenter

• edit the config for a cluster OpsCenter is monitoring

• Provisioning

• add nodes to an existing cluster

• provision a new cluster (local or EC2)

• Run a one-off backup

• Run a restore of a backup

• Scheduled backups

• add

• delete

• modify

User role privileges

Users assigned the user role can perform all other OpsCenter tasks.

Assigning or modifying access roles
The first time you assign an access role to an administrator or user, OpsCenter generates a password file and enables
access control. Authentication is required to access OpsCenter for viewing objects and performing tasks.

To create or modify access roles:

Configuring OpsCenter

17

1. Run the set_passwd.py utility. For example, to create user johndoe with admin role privileges:

$ python /usr/share/opscenter/bin/set_passwd.py johndoe admin

Please enter a password for 'johndoe'.
Password:

2. After configuring authentication, restart OpsCenter:

$ service opscenterd restart

Restarting is required only when you create the first user (because it enables access control). No restart is
required for adding, modifying, or removing users.

Removing a user
To remove a user:

1. Edit the OpsCenter password file:

• Packaged installs: /etc/opscenter/.passwds

• Binary installs: <install_dir>/passwds

2. Delete the line of the user that you want to remove (<username>:<password_hash>:<role>). For example:

johndoe:5e8848...42d8:admin

Restarting is not required to remove a user. Restarting is required to delete the password file. Deleting the
password file disables access control. If you delete all users, you will not be able to access OpsCenter.

Configuring SSL
OpsCenter uses Secure Socket Layer (SSL) to encrypt the communication protocol and authenticate traffic between
OpsCenter agents and the main OpsCenter daemon (Linux and Mac OSX) or the DataStax OpsCenter Service
(Windows). The default SSL state depends on the operating system:

• Linux and Mac OSX: enabled. To disable, see Disabling SSL.

• Windows: disabled. To enable, see Enabling SSL.

Consider disabling SSL if you are running OpsCenter and DataStax Enterprise or DataStax Community under the
following conditions:

• On a secure internal network.

• In a development environment where agents and OpsCenter run on the same computer free from network threats.

• In a situation where you are not concerned about someone listening to OpsCenter traffic.

• In automatic deployments of OpsCenter to avoid re-installation of agents. (Unless you disable SSL, installing
OpsCenter generates SSL files for encryption and requires re-installation of agents.)

• On a computer that does not have the required version of OpenSSL.

If you have no need for SSL, you can simply disable the SSL option to avoid installing OpenSSL.

SSL requirements
If the SSL option is enabled, OpsCenter requires a specific version of OpenSSL for each supported operating system:

Version Operating System

0.9.8 CentOS 5.x, Debian, Mac OSX, Oracle Linux 5.5, RHEL 5.x, SuSe Enterprise 11.x, Ubuntu, and Windows

Configuring SSL

18

1.0.0 CentOS 6.x, Oracle Linux 6.1, and RHEL 6.x

To determine which version of OpenSSL is installed on a Linux or Mac OSX system, use the following command:

openssl version

Disabling SSL in Binary Tarball Installations (Linux and Mac OSX)
By default, SSL is enabled on Linux and Mac OSX installations. You modify the configuration files for OpsCenter and its
agents to disable SSL on Linux and Mac OSX.

On the OpsCenter machine:

1. Go to the directory containing the OpsCenter configuration file (opscenterd.conf):

• cd /etc/opscenter (package install)

• cd /<install_location>/conf (binary tarball install)

2. Open opscenterd.conf, for editing. For example:

sudo vi opscenterd.conf

3. Add the following to opscenterd.conf:

[agents]
use_ssl = false

4. Restart OpsCenter:

On the agent machine:

1. Go to the directory containing the OpsCenter agent configuration file (address.yaml):

cd /<install_location>/conf

2. Open address.yaml for editing. For example:

sudo vi address.yaml

3. Add the following command and set its value to 0.

use_ssl: 0

4. Restart the OpsCenter agent.

Enabling SSL in Windows installations
By default, SSL is disabled on Windows installations. To enable SSL, you run setup.py (which generates the required
SSL keys and certificates), modify the configuration files for OpsCenter and its agent, and then restart the DataStax
OpsCenter Agent Service.

To enable SSL:

1. Go to the opscenter\bin directory:

Program Files (x86) > DataStax Community > opscenter > bin

2. Click or double-click setup.py to run it.

The agentKeyStore key pairs are generated and appear in opscenter\ssl directory.

3. Go to the opscenter\conf directory:

DataStax Community > opscenter > conf

4. Open the configuration file for OpsCenter, opscenterd.conf, in a text editor such as Notepad.

Configuring SSL

19

5. In the agents section, change use_ssl from 0 to 1 (or true), and then save the file.

6. Go to the opscenter\agent\conf directory:

DataStax Community > opscenter > agent > conf

7. Open the configuration file for OpsCenter agent, address.yaml, in a text editor.

8. In the address.yaml file, change the value for use_ssl from 0 to 1, and then save the file.

use_ssl: 1

9. From the Control Panel, restart the DataStax OpsCenter Agent Service.

Configuring HTTPS
You can enable or disable Hypertext Transfer Protocol Secure (HTTPS) support in OpsCenter.

To enable HTTPS:

Configuring HTTPS

20

1. Open the OpsCenter configuration file, opscenterd.conf, located in one of these directories:

• Package installations: /etc/opscenter/opscenterd.conf

• Binary tarball installations (Linux and Mac OSX): <install_location>/conf/opscenterd.conf

• Windows installations:
Program Files (x86)\DataStax Community\opscenter\conf\opscenterd.conf

2. Scroll to the [webserver] section.

This snippet from opscenterd.conf shows the [webserver] section that you change:

opscenterd.conf

[webserver]
port = 8888
interface = 127.0.0.1
The following settings can be used to enable ssl support for the opscenter
web application. Change these values to point to the ssl certificate and key
that you wish to use for your OpsCenter install, as well as the port you would like
to serve ssl traffic from.
#ssl_keyfile = /var/lib/opscenter/ssl/opscenter.key
#ssl_certfile = /var/lib/opscenter/ssl/opscenter.pem
#ssl_port = 8443

3. Remove the comment markers (#) in front of ssl_keyfile, ssl_certfile, and ssl_port.

You can use the default values for the ssl_keyfile and ssl_certfile or replace them with the path to your own private
and public certificates.

4. Save opscenterd.conf and restart OpsCenter.

Configuring OpsCenter for multiple regions
OpsCenter 2.1 and later can operate in multiple regions or IP forwarding deployments.

Use the following approach for deployments where a public IP forwards to a private IP on the agent, but that machine is
not aware of (that is, can't bind to) the public IP.

To configure OpsCenter agents for multiple regions or IP forwarding:

1. Open the address.yaml file for editing.

The location of this file depends on the type of installation:

• Package installations: /var/lib/opscenter-agent/conf directory

• Binary tarball installations (Linux and Mac OSX): <install_location>/conf directory

2. Add the following option to the address.yaml:

local_interface: (Optional) The IP used to identify the node. If broadcast_address is set in cassandra.yaml, this
should be the same as that; otherwise, it is typically the same as listen_address in cassandra.yaml. A good check
is to confirm that this address is the same as the address that nodetool ring outputs.

agent_rpc_interface: The IP that the agent HTTP server listens on. In a multiple region deployment, this is
typically a private IP.

agent_rpc_broadcast_address: The IP that the central OpsCenter process uses to connect to the agent.

Configuring OpsCenter for multiple regions

21

3. Repeat the above steps for each node.

For example, here is the configuration for a three node cluster that spans two regions:

Region: us-west
Availability Zone: us-west-2

Node1
 public IP: 198.51.100.1
 private IP: 10.11.12.1
 Cassandra (cassandra.yaml)
 broadcast_address: 198.51.100.1
 listen_address: 10.11.12.1
 Agent (address.yaml)
 local_address: 198.51.100.1
 agent_rpc_interface: 10.11.12.1
 agent_rpc_broadcast_address: 198.51.100.1
 OpsCenter (opscenterd.conf)
 interface: 198.51.100.1

Node2
 public IP: 198.51.100.23
 private IP: 10.11.12.15
 Cassandra (cassandra.yaml)
 broadcast_address: 198.51.100.23
 listen_address: 10.11.12.15
 Agent (address.yaml)
 local_address: 198.51.100.23
 agent_rpc_interface: 10.11.12.15
 agent_rpc_broadcast_address: 198.51.100.23

Region: us-east
Availability Zone: us-east-1

Node1
 public IP: 203.0.113.20
 private IP: 10.11.13.28
 Cassandra (cassandra.yaml)
 broadcast_address: 203.0.113.20
 listen_address: 10.11.13.28
 Agent (address.yaml)
 local_address: 203.0.113.20
 agent_rpc_interface: 10.11.13.28
 agent_rpc_broadcast_address: 203.0.113.20

Configuring events and alerts
The OpsCenter Event Log page displays a continuously updated list of events and alerts. The following list reflects the
most detailed logging level available for Cassandra, DataStax Enterprise, and OpsCenter events. The available levels
are DEBUG(0), INFO (1), WARN (2), ERROR (3), CRITICAL (4), ALERT (5).

Data for these events is stored in the events and events_timeline column families in the OpsCenter keyspace:

Event Code Description

COMPACTION 0 Major compaction has occurred.

CLEANUP 1 Unused keys have been removed or cleaned up.

Configuring events and alerts

22

REPAIR 2 A repair operation has been initiated.

FLUSH 3 Memtables have been flushed to disk.

DRAIN 4 The commit log has been emptied, or drained.

DECOMMISSION 5 A leaving node has streamed its data to another node.

MOVE 6 Like NODE_MOVE; a new token range has been assigned.

NODE_DOWN 13 A node has stopped responding.

NODE_UP 14 An unresponsive node has recovered.

NODE_LEFT 15 A node has left, or been removed from, the ring.

NODE_JOIN 16 A node has joined the ring.

NODE_MOVE 17 A node has been assigned a new token range (the token has moved).

OPSC_UP 18 OpsCenter has been started and is operating.

OPSC_DOWN 19 OpsCenter was stopped or stopped running.

GC 20 Java garbage collection has been initiated.

Optionally, you can configure OpsCenter to send alerts for selected levels of events. These alerts can be provided
remotely by email, or through HTTP to a selected URL. Alerts are disabled by default.

Note
Alerts are triggered only by events from the OpsCenter API/UI. For example, a nodetool move operation submitted
from the command line does not trigger an alert. However, a move operation launched using Dashboard > List View
> Actions > Move controls in the OpsCenter does trigger an alert.

All alerts contain the following information about each event captured:

Field Description Example

api_source_ip IP that originally sent the request. 67.169.50.240

target_node Destination of a STREAMING action. 50.1.1.11

event_source Component that caused the event. OpsCenter (i.e., restart, start)

user OpsCenter user that caused the event. opscenter_user

time Normal timestamp for the event. 1311025650414527

action Type of event (see above table) 20

message Description of the event. Garbage Collecting node 50.1.1.13

level Numerical code for the log level. 1

source_node Node where the event originated. 50.1.1.13

level_str Logging level of the event. INFO

Enabling email alerts
OpsCenter can post alerts to selected email addresses. To enable email alerts, you must edit the email.conf file and
provide valid SMTP server host and port information. This file is located in the following directories:

• Package installations: /etc/opscenter/event-plugins

• Binary tarball installations (Linux and Mac OSX):
<install_location/opscenter/conf/event-plugins

Configuring events and alerts

23

• Windows installations:
Program Files (x86)\DataStax Community\opscenter\conf\event-plugins

To enable email alerts:

1. Make sure that you have valid SMTP mail accounts to send and receive alerts.

2. On the OpsCenter daemon host, open the email.conf file for editing.

3. Set enabled to 1.

4. Provide valid values for your SMTP host, port, user, and password.

5. Enable Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol on your system if you want secure
communications. Typically, SSL is required.

6. Provide valid values for the to_addr and from_addr email addresses. The to_addr value is the account that
will receive alerts.

7. Optionally, set the level of alerts to send and the desired subject line.

8. Save email.conf and restart the OpsCenter daemon.

For example, in a system with email alerts enabled for critical and alert-level events,:file:email.conf looks like:

[email]
enabled=1
levels can be comma delimited list of any of the following:
DEBUG,INFO,WARN,ERROR,CRITICAL,ALERT
If left empty, will listen for all levels
levels=CRITICAL,ALERT
smtp_host=smtp.gmail.com
smtp_port=465
smtp_user=mercury@gmail.com
smtp_pass=*********
smtp_use_ssl=1
smtp_use_tls=0
to_addr=cassandra_admin@acme.com
from_addr=mercury@gmail.com
subject=OpsCenter Event

To enable email alerts to multiple addresses:

Create a different email conf file with settings for each email address. All conf files are loaded so you can name
them email1.conf, email2.conf, and so on.

Enabling alerts posted to a URL
OpsCenter can post alerts to a URL if you provide a correctly formatted POST script. For example, a simple PHP script
containing print_r($_POST); should be sufficient for getting started.

To enable URL posting on the OpsCenter side, you must edit posturl.conf and provide a path to your script. This
file is located in the following directories:

• Package installations: /etc/opscenter/event-plugins

• Binary tarball installations (Linux and Mac OSX):
<install_location/opscenter/conf/event-plugins

• Windows installations:
Program Files (x86)\DataStax Community\opscenter\conf\event-plugins

To enable URL posting:

1. Make sure your web server and posting script are configured to receive alerts.

Configuring events and alerts

24

2. On the OpsCenter daemon host, open posturl.conf for editing.

3. Set enabled to 1.

4. For url, provide a valid path to your posting script. For example:
url=http://50.1.1.11/postOPSCevents.php.

5. Optionally, select the desired logging level. The default is to listen for all levels of events.

6. Save posturl.conf and restart the OpsCenter daemon.

In a system with posting enabled for critical and alert-level events, posturl.conf looks like:

[posturl]
enabled=1
url=http://50.1.1.11/postOPSCevents.php
levels can be comma delimited list of any of the following:
DEBUG,INFO,WARN,ERROR,CRITICAL,ALERT
If left empty, will listen for all levels
levels=CRITICAL,ALERT

You can set preferences to specify how the posting is handled on the receiving side.

To verify that events are posting correctly:

1. Post events to a file such as /tmp/events on the web server host.

2. Create a script. For example, create a PHP script http://50.1.1.11/postOPSCevents.php:

<?php
 file_put_contents('/tmp/events', print_r($_POST,true), FILE_APPEND);
?>

3. Deploy the script. You might need to restart the web server.

4. Launch a logged event, such as an OpsCenter restart or garbage compaction from Dashboard > Cluster > List
View. Output to /tmp looks something like this:

Array
(
 [api_source_ip] => 67.169.50.240
 [target_node] => None
 [event_source] => OpsCenter
 [user] => None
 [time] => 1311025598851602
 [action] => 20
 [message] => Garbage Collecting node 50.1.1.24
 [level] => 1
 [source_node] => 50.1.1.24
 [level_str] => INFO
)

Configuring data collection and expiration
OpsCenter collects system and column family metrics data for each node in your cluster. OpsCenter creates its own
keyspace within a cluster for storing collected metrics. Metrics data is collected at regular intervals and stored within
your cluster in a keyspace called OpsCenter. The column families containing metric data continue to grow. You can
configure how long you want to keep historical metrics. Data expires after configurable time periods.

Configuring data collection and expiration

25

Estimating the amount of data generated
The following table provides guidance for estimating the amount of metrics data generated:

Number of days Number of column families monitored MB per node

31 5 200

31 10 300

31 20 500

365 5 250

365 10 380

365 20 630

The default upper limit of data collected is 365 days.

Controlling data collection
To help control consumption of disk space, OpsCenter provides two ways to limit the growth of OpsCenter performance
data:

• By excluding specified keyspaces and column families from performance data collection

• By shortening the time period after which performance data automatically expires

Excluding keyspaces and column families

By default, OpsCenter does not collect performance data for its own keyspace or the Cassandra system keyspace. You
can manually add any other keyspaces or column families that you do not want to monitor in the
[cassandra_metrics] section of the configuration file.

For example, to prevent data collection for the keyspace test as well as the column family Keyspace1.Standard1,
uncomment and edit the following values in the OpsCenter cluster configuration file (<cluster_specific>.conf):

[cassandra_metrics]
ignored_keyspaces = system, OpsCenter, test
ignored_column_families = Keyspace1.Standard1

Column families are specified in the format:

<keyspace_name>.<column_family_name>.

Changing performance data expiration times

Performance data stored in OpsCenter expires after configurable time periods. The default values are designed to
provide efficient compaction and eventual deletion of the data, with faster expiration times for the more granular,
larger-volume data rollups.

• One-minute rollups (1min_ttl) expire after after one week, or 604800 seconds.

• Five-minute rollups (5min_ttl) expire after four weeks, or 2419200 seconds.

• Two-hour rollups (2hr_ttl) expire after one year, or 31536000 seconds.

To change expiration time period:

In this example, the one-minute and five-minute rollups are set to expire twice as fast as the defaults, and two-hour
rollups are set to be kept indefinitely (expiration is disabled).

1. Edit the conf/clusters/<cluster>.conf file.

Configuring data collection and expiration

26

2. Add the following time-to-live (ttl) values under a [cassandra_metrics] section:

1min_ttl = 302400
5min_ttl = 1209600
2hr_ttl = -1

3. Restart OpsCenter.

Data collected after restarting OpsCenter expires according to the new setting. The data collected before
restarting OpsCenter expires according to the setting in effect when it was collected.

Advanced configuration
Using the OpsCenter console is the most convenient way to configure basic OpsCenter settings. To configure advanced
capabilities, you modify configuration files.

The main configuration files for OpsCenter are:

• opscenterd.conf - Configures the properties for the OpsCenter daemon.

• <cluster_specific>.conf - Configures properties for each cluster monitored by OpsCenter. This file is
created when you add a cluster to the Opscenter.

OpsCenter configuration properties
The location of the opscenterd.conf file depends on the type of installation:

• Packaged installations: /etc/opscenter/opscenterd.conf

• Binary tarball installations (Linux and Mac OSX): <install_location>/conf/opscenterd.conf

• Windows installations:
Program Files (x86)\DataStax Community\opscenter\conf\opscenterd.conf

Note
After changing properties in this file, restart OpsCenter for the changes to take effect.

You configure the following properties in opscenterd.conf:

[agents] ssh_port

The Secure Shell (SSH) port that listens for agent-OpsCenter communications. Add an [agents] section, if one doesn't
already exist, to the opscenterd.conf. In this section, add the ssh_port option and a value for the port number:

[agents]
ssh_port = 2222

[webserver] port

• The HTTP port used for client connections to the OpsCenter web server. Default is 8888.

• Optional HTTPS support.

To enable HTTPS, remove the comment markers (#) in front of properties prefixed with ssl in the opscenterd.conf
file, as described in Configuring HTTPS.

Advanced configuration

27

[webserver] interface

The interface that the web server uses to listen for client connections. The interface must be an externally accessible IP
address or host name.

[logging] level

The logging level for OpsCenter. Available levels are (from most to least verbose): TRACE, DEBUG, INFO, WARN, or
ERROR. The OpsCenter log file is located in /var/log/opscenter/opscenterd.log.

[stat_reporter] interval

By default, OpsCenter periodically sends usage metrics about the cluster to DataStax. This data is collected and
reported when Opscenter starts up, and then every 24 hours afterwards. The goal is for this data to be completely
anonymous. This includes not tracking or logging the ips that this data is sent from. You can turn this functionality
completely off by adding the following lines to your opscenterd.conf file:

[stat_reporter]
interval = 0

Here is a complete breakdown of the data OpsCenter will communicate back to DataStax. The data is sent in a
key/value JSON format.

The following information is recorded about the OpsCenter install:

• 'install_id': This is a random uuid generated when OpsCenter starts for the first time. This is used for associating
reports from the same install.

• 'is_paid': This is a flag indicating wether or not this is the free or enterprise version of OpsCenter.

• 'opscenter_version': The version of OpsCenter in use.

• 'opscenter_ram': The amount of RAM on the OpsCenter machine.

• 'opscenter_cores': The number of cores on the OpsCenter machine.

• 'opscenter_os': The generic name of the operating system of the OpsCenter machine. For example,
linux/windows/mac.

• 'opscenter_os_sub': The specific name of the operating system of the OpsCenter machine. For example
CentOS/Ubuntu/Debian.

• 'opscenter_os_version': The operating system version of the OpsCenter machine.

• 'opscenter_arch': The architecture of the OpsCenter machine.

• 'python_version': The version of python running on the OpsCenter machine.

• 'opscenter_instance_type': The instance type the OpsCenter machine, if OpsCenter is running in EC2.

• 'separate_storage': A flag indicating if OpsCenter is storing metrics in the cluster it is monitoring.

• 'config_diff': A list of the OpsCenter config options that were modified to be different than the defaults. This
includes the names of the options that were changed but not the values of those options.

These stats are collected about each cluster OpsCenter is monitoring:

• 'cluster_id': An md5 hash of the cluster name. Used for identifying unique clusters while maintaining anonymity

• 'conf_id': An md5 hash of the file name the config for the cluster is stored in. Used for the same purposes as
'cluster_id'.

• 'partitioner': The partitioner the cluster is using.

• 'snitch': The snitch the cluster is using.

• 'keyspace_count': The number of keyspaces in the cluster.

Advanced configuration

28

• 'columnfamily_count': The number of column families in the cluster.

• 'strategy_options': A list of the replication options used for each keyspace in the cluster.

• 'cql3_cf_count': The number of column families created with CQL3 in the cluster.

• 'node_count': The number of nodes in the cluster.

• 'avg_token_count': The average number of tokens per node.

• 'cassandra_versions': A list of the different Cassandra versions in the cluster.

• 'bdp_version': A list of the different DataStax Enterprise versions in the cluster.

• 'rack_map': A map of each rack in the cluster and how many nodes are in that rack.

• 'dc_count': The number of datacenters in the cluster

• 'free_space': The amount of free disk space across the cluster.

• 'used_space': The amount of used disk space across the cluster.

• 'cluster_os': A list of the different operating systems used across the cluster.

• 'cluster_ram': The average amount of ram per node in the cluster.

• 'cluster_cores': The average number of cores per node in the cluster.

• 'cluster_instance_types': A list of the EC2 instance types in the cluster, if EC2 is being used.

[authentication] passwd_file

Full path to the file for configuring password authentication for OpsCenter. If this file does not exist, OpsCenter does not
verify passwords. To enable password authentication, use the set_passwd.py utility to create users and set their
password and role. OpsCenter currently has two available roles: admin or user.

Cluster configuration properties
You set OpsCenter configuration properties in the <cluster_specific.conf> file. The location of this file depends
on the type of installation:

• Package installations: /etc/opscenter/clusters/<cluster_specific>.conf

• Binary tarball installations (Linux and Mac OSX):
<install_location>/conf/clusters/<cluster_specific>.conf

• Windows installations:
Program Files (x86)\DataStax Community\opscenter\conf\clusters\<cluster_specific>.conf

Note
After changing properties in this file, restart OpsCenter for the changes to take effect.

Cassandra connection properties

The following properties inform OpsCenter about the Real-time (Cassandra), Analytics (Hadoop), and Search (Solr)
nodes that it is monitoring:

[jmx] port

The JMX (Java Management Extensions) port of your cluster. In Cassandra versions 0.8 and higher, the JMX port is
7199.

Advanced configuration

29

[cassandra] seed_hosts

A Cassandra seed node is used to determine the ring topology and obtain gossip information about the nodes in the
cluster. This should be the same comma-delimited list of seed nodes as the one configured for your Cassandra or
DataStax Enterprise cluster by the seeds property in the cassandra.yaml configuration file.

[cassandra] api_port

The Thrift remote procedure call port configured for your cluster. Same as the rpc_port property in the
cassandra.yaml configuration file. Default is 9160.

[cassandra] install_location

The directory in which Cassandra is installed. If install_location is not specified, OpsCenter looks in the
package-specific installation locations.

For a tarball installation of DataStax Enterprise, the install_location is
<dse_install_location>/resources/cassandra.

[cassandra] conf_location

The location of the cassandra.yaml configuration file.

If install_location is specified, but conf_location is not, then conf_location is assumed to be
<install_location>/conf/cassandra.yaml.

If conf_location is specified, it must be the absolute path to the Cassandra configuration file on all nodes. These
settings are cluster-wide and require that the specified locations be correct for every node.

Metrics Collection Properties

The following properties are used to limit the keyspaces and column families for which you collect metrics.

[cassandra_metrics] ignored_keyspaces

A comma-delimited list of Cassandra keyspaces for which you do not want to collect performance metrics. By default,
the system and OpsCenter keyspaces are excluded.

[cassandra_metrics] ignored_column_families

A comma-delimited list of Cassandra column families for which you do not want to collect performance metrics. Entries
should be in the form of keyspace_name.*columnfamily_name*.

Performance Data Expiration Properties

These properties set the expiration time for data stored in the OpsCenter keyspace. Each time period for rolling up data
points into summary views has a separate expiration threshold, or time-to-live (ttl) value expressed in seconds. By
default, shorter time periods have lower values that result in more efficient expiration and compaction of the relatively
larger volumes of data.

Uncomment these properties to change the default expiration periods for performance data. Properties and default
values are:

1min_ttl = 604800

One-minute rollups expire after after one week, or 604800 seconds.

5min_ttl = 2419200

Five-minute rollups expire after four weeks, or 2419200 seconds.

Advanced configuration

30

2hr_ttl = 31536000

Two-hour rollups expire after one year, or 31536000 seconds.

Advanced configuration

31

Starting and stopping OpsCenter and its agents
Packaged installations include startup scripts for running OpsCenter as a service. These options can be used with the
service opscenterd command:

service opscenterd start|stop|status|restart|force-reload

By default, DataStax Enterprise services on Windows start automatically.

Starting OpsCenter
Tarball installation

To start OpsCenter, enter one of the following commands from the <install_location>:

• bin/opscenter (in the background - default)

• bin/opscenter -f (in the foreground)

Packaged installation

To start OpsCenter, enter the following command:

sudo service opscenterd start

Windows

To start OpsCenter, start the DataStax OpsCenter Service in the Control Panel.

Restarting OpsCenter
Tarball installation

To restart OpsCenter in a tarball installation:

Use the stop and start procedures to stop and start OpsCenter.

Packaged installation

To restart a packaged installation, enter this command:

sudo service opscenterd restart

Windows

To restart OpsCenter, restart the DataStax OpsCenter Service in the Control Panel.

Stopping OpsCenter
Tarball installation

To stop OpsCenter, find the OpsCenter Java process ID (PID) and kill the process using its PID number. For example:

ps -ef | grep opscenter
sudo kill <pid>

Packaged installation

To stop OpsCenter, enter the following command:

sudo service opscenterd stop

Windows

Starting and stopping OpsCenter and its agents

32

To stop OpsCenter, stop the DataStax OpsCenter Service in the Control Panel.

Starting the OpsCenter agent
Tarball installation

To start the OpsCenter Agent, enter one of the following commands from the <install_location>.

bin/opscenter-agent (in the background - default)

bin/opscenter-agent -f (in the foreground)

Packaged installation

The OpsCenter Agent starts automatically when you start OpsCenter.

Windows

Start the DataStax OpsCenter Agent Service in the Control Panel.

Restarting the OpsCenter Agent
Packaged installation

If you installed OpsCenter from a package use:

sudo service opscenter-agent restart

Tarball installation

If you installed DataStax OpsCenter using the binary tarball or if you installed the agent using the agent tar installer
(agent.tar.gz):

1. Stop the OpsCenter agent.

ps -ef | grep opscenter-agent
kill <pid>

2. Restart the OpsCenter agent from the <install_location>.

bin/opscenter-agent (in the background - default)

bin/opscenter-agent -f (in the foreground)

Windows

Restart the DataStax OpsCenter Agent Service in the Control Panel.

Starting the OpsCenter agent

33

Using OpsCenter
OpsCenter is a graphical user interface for monitoring and administering all nodes in a Cassandra cluster from one
centralized console. It runs on the client-side in a web browser.

Introduction to OpsCenter
At the top of every functional area of OpsCenter, you can access these functions:

• Create Cluster: create a cluster.

• Add a cluster: add clusters to OpsCenter to monitor. Available in OpsCenter Enterprise Edition only.

• Feedback: an online form that sends your evaluation of OpsCenter or any comments to us.

• Report: information about clusters that OpsCenter manages in PDF format.

OpsCenter is divided into these main functional areas:

• Overview - Survey each cluster's Dashboard in this condensed view. Displayed when multiple clusters are
present.

• Dashboard - View graphs of the most commonly watched Cassandra performance metrics.

• Software update notification - be notified when an upgrade to OpsCenter or Cassandra or DSE on any of your
clusters is available. The actual upgrade processes will be manual. When a new version is available a link at the
top of the Dashboard appears. Clicking on it displays a dialog with a link to the new version of the software.

• Cluster: see your cluster from different perspectives and perform certain maintenance operations on cluster
nodes.

• Cluster administration: add, modify, or remove a cluster from OpsCenter. Available in OpsCenter Enterprise
Edition only.

• Performance: monitor a number of Cassandra cluster performance metrics. Real-time and historical performance
metrics are available at different granularities: cluster-wide, per node, or per column family.

• Alerts: configure alert thresholds for a number of Cassandra cluster-wide, column family, and operating system
metrics. Available in OpsCenter Enterprise Edition only.

• Scehma: create and manage keyspaces and the column families within them.

• Data backups - visually take, schedule, and manage backups across all registered clusters. Restore to clusters
from backups. Available in OpsCenter Enterprise Edition only.

• Data Explorer: browse through column family data.

• Event Log: view the most recent OpsCenter log events, such as OpsCenter startup and shutdown.

Node administration
In the Cluster area of OpsCenter, you select different views of the nodes comprising your Cassandra cluster, and then,
perform node management.

OpsCenter Enterprise Edition 3.0 can monitor and administer Cassandra 1.0 and later, but with Cassandra 1.2 it will not
work as described in these procedures if you enable virtual nodes. When you enable virtual nodes, OpsCenter chooses
a single token for each node for operations, such as collecting metrics. Attempting to move nodes, rebalance nodes,
and perform other tasks involving token ranges is not supported.

Node management operations
Each of the cluster views--ring, physical, and list--has an Actions button.

Using OpsCenter

34

• In the Ring View or Physical View of a cluster, click the graphic representation of the node. The Actions button
appears in the dialog.

• In the List View of a cluster, select a node. If necessary, expand the List View window to see the Actions button on
the right side.

Click the Actions button to access a drop-down list of node management operations. To avoid impacting cluster
performance, perform actions that move data between nodes at low-usage times. Examples of such actions are move,
decommission, and repair.

This table describes actions on the drop-down list:

Action Description

View Metrics Redirects you to the Performance area of OpsCenter where you can select metrics
graphs and configure performance views for the selected node.

View Replication Shows the replication relationships between the selected node and other nodes in
the cluster. Visible in Ring View and Physical View.

Configure Allows you to change the configuration of the node.

Start Starts the DSE / Cassandra process on the node.

Stop Stops the DSE / Cassandra process on the node.

Restart Restarts the DSE / Cassandra process on the node.

Cleanup Removes rows that the node is no longer responsible for. This is usually done after
changing the partitioner tokens or the replication options for a cluster.

Compact Performs a major compaction, which is not a recommended procedure in most
Cassandra clusters.

Flush Causes the recent writes currently stored in memory (memtables) to be flushed to
disk as persistent SSTables.

Repair Makes a node consistent with its replicas by doing an in-memory comparison of all
the rows of a column family, and resolving any discrepancies between replicas by
updating outdated rows with the current data.

Perform GC Forces the Java Virtual Machine (JVM) on the selected node to perform a garbage
collection (GC). This reclaims physical disk space occupied by obsolete SSTables,
such as those that have been truncated or compacted (merged) into new SSTables.

Decommission Removes a node from the cluster and streams its data to neighboring replicas.

Drain Causes the recent writes currently stored in memory (memtables) to be flushed to
disk as persistent SSTables, and then makes the node read-only (the node will stop
accepting new writes). This is usually done when upgrading a node.

Move Changes the partitioner token assignment for the node, thus changing the range of
data that the node is responsible for.

Cluster administration
You can administer clusters from OpsCenter:

• Creating a cluster

• Adding a cluster

• Generating a report

• Collecting diagnostic data

• Adding a node to a cluster

Cluster administration

35

• Configuring a cluster

• Removing a cluster

• Rebalancing a cluster

• Restarting a cluster

• Modifying a cluster setting

Note
OpsCenter Enterprise Edition 3.0 can monitor and administer Cassandra 1.2 as described in these procedures unless
you enable virtual nodes. When you enable virtual nodes, OpsCenter chooses a single token for each node for
operations, such as collecting metrics. Attempting to move nodes, rebalance nodes, and perform other tasks involving
token ranges is not supported.

Prerequisites for administering a cluster
You must have a running and properly configured Cassandra cluster, as described in the documentation. OpsCenter
supports:

OpsCenter versions Cassandra versions DSE versions

1.4.x 0.7, 0.8, 1.0, 1.1 1.0, 2.0

2.0 0.8, 1.0, 1.1 1.0, 2.0

2.1 0.8, 1.0, 1.1 1.0, 2.0

3.0 1.0, 1.1, 1.2 1.0, 2.x, 3.0

3.1 1.0, 1.1, 1.2 1.0, 2.x, 3.0

3.2 1.1, 1.2 2.x, 3.0.x, 3.1.x

Creating a cluster
You can provision new clusters on colocated hosts or in the cloud.

To create a cluster:

1. Click Create cluster.

2. Fill out the form as appropriate.

3. Click Save Cluster.

Note
When deploying to EC2, the opscenterd to agent communication must be open to 0.0.0.0 in the EC2 security group
(that is for ports 61620 and 61621).

Adding a cluster
To add a cluster to Opscenter:

1. Click Add a cluster.

Cluster administration

36

http://www.datastax.com/docs

2. Enter at least one hostname or IP address, newline-delimited, for the nodes comprising the cluster. OpsCenter
discovers the other nodes for you.

For example:

ec2-123-45-6-789.us-west-1.compute.amazonaws.com
ec2-234-56-7-890.us-west-1.compute.amazonaws.com

Note
It is recommended that you supply two or three hosts or IP addresses, in case a given node is down or
decommissioned.

3. If you are not using the default JMX or Thrift ports, enter the appropriate port numbers.

4. If required, click Add Credentials and enter the username and password for JMX or Thrift ports.

5. Click Add Cluster.

Generating a report
To generate a PDF report about the cluster being monitored, click Report at the top of the OpsCenter interface. The
report shows the version of OpsCenter, number of clusters and nodes being monitoring, gigabytes of storage used,
name of the cluster, and information about nodes in the cluster. The node information includes:

• Node name and IP address

• Cassandra software version

• DataStax software version

• Memory usage

• Operating system running on the node

You can save or print the PDF report.

Collecting diagnostic data
You can click Diagnostics to download a tarball that contains information about opscenterd and all nodes in a specified
cluster. This can be used to attach to support tickets.

Adding a node to a cluster
To add a node to a cluster

1. Click Add Node in a cluster view.

2. Enter the following:

Option Value

Package The version of DSE to install on the node.

DataStax
Credentials

The username and password you received when registering to Download DSE.

Nodes The hostname or IP address, token, and software to install on the node (from Cassandra, Solr, and
Hadoop). You can add more than one node by clicking Add.

Cluster administration

37

Node
Credentials
(sudo)

The username and password to authenticate on the host. (Optional) the private SSH key to use to
use for authentication.

3. Click Add Nodes.

Configuring a cluster
You can manage cassandra.yaml from OpsCenter. If the cluster exists in multiple datacenters, you can configure
cassandra.yaml for a single datacenter, or for all nodes in a cluster. To manage cassandra.yaml for a single node by
clicking on the Actions dropdown for a node.

To configure a cluster:

1. Click Configure Cluster in any of the Cluster views.

2. Edit the value for any of the options. For a description of the options in the file, see the documentation for the
version of Cassandra or DSE which the cluster or node is running. For example, cassandra.yaml.

3. When finished editing, click Save.

4. You will be prompted to perform a rolling restart on the nodes in your cluster, or you may click Cancel if you do
not wish to do a restart.

Removing a cluster from OpsCenter
To remove a cluster

This removes the cluster from OpsCenter; it does not delete the cluster.

1. Click Edit Cluster.

2. Click Delete Cluster.

Note
When you delete a cluster, any EC2 nodes are not deleted.

Rebalancing a cluster
Cluster rebalancing is a process that makes sure each node in a Cassandra cluster is managing an equal amount of
data. Currently, OpsCenter only supports rebalancing on clusters using the random partitioner or murmur 3 partitioner.
Ordered partitioners are not supported. When using the random partitioner or murmur 3 partitioner, a rebalance is
usually required only when you have changed the cluster topology in some way, such as adding or removing nodes or
changing the replica placement strategy.

A cluster is considered balanced when each node is responsible for an equal range of data. This is done by evaluating
the partitioner tokens assigned to each node to make sure that the data ranges each node is responsible for are even.
Even though a cluster is considered balanced, it is still possible that one or more nodes have more data than the others.
This is because the size of the rows is not taken into account, only the number of rows managed by each node.

To rebalance a cluster:

1. In the Cluster section of OpsCenter, select Ring View, Physical View or List View. This shows a view of your
cluster.

2. Click the Rebalance Cluster button. This causes OpsCenter to check if the token ranges are evenly distributed
across the nodes in your cluster. If your cluster is already balanced, then there is nothing for OpsCenter to do.

Cluster administration

38

http://www.datastax.com/docs/1.1/configuration/node_configuration#cassandra-yaml

3. If the cluster does require rebalancing, OpsCenter performs the following steps:

• Calculates appropriate token ranges for each node and identify the nodes that need to move.

• Makes sure that there is the appropriate free space to perform the rebalancing.

• Moves nodes, one node at a time so as to lessen the impact on the cluster workloads. A move operation
involves changing the partitioner token assignment for the node, thus changing the range of data that the
node is responsible for. A move will stream data from other nodes.

• After a move is complete on a node, runs cleanup. A cleanup operation removes rows that the node is no
longer responsible for.

4. If you cancel a rebalance operation before all nodes are moved, you can resume it at a later time by clicking the
Rebalance Cluster button again.

Restarting a node
You can start, stop, or restart the Cassandra or DSE service on any node. This can be done via the Actions dropdown
on a node.

To restart a cluster:

1. In any cluster view, click on a node.

2. In the contextual menu select Restart from the Actions dropdown.

There is also rolling restart functionality for the entire cluster. This can be done via the "Restart Cluster" in any of the
Cluster views.

Modifying a cluster setting
To modify a cluster setting:

1. Click Edit Cluster.

2. Change the IP addresses of cluster nodes.

3. Change JMX and Thrift listen port numbers. Click Add credentials if the ports require authentication.

4. (Optional) You can check thhe DSE security (kerberos) is enabled on my cluster and enter the service name.

5. (Optional) You can check the Client node encryption is enabled on my cluster and enter the CA Certificate
File Path.

6. (Optional) You can check the Validate SSL Certifcates and enter the Truststore File Path and Trustore
Password.

For more information about enablinb Kerbeos see Security in the DSE Documentation.

7.Click Save Cluster.

OpsCenter performance metrics
In the Performance area of OpsCenter, you monitor a number of performance metrics about a Cassandra cluster.
Real-time and historical performance metrics are available at different granularities: cluster-wide, per node, or per
column family. OpsCenter 3.0 and later has been optimized to handle thousands of column families efficiently.

This section contains the following topics:

Using performance metrics
Select Performance in the OpsCenter Console to view these types of metrics:

OpsCenter performance metrics

39

http://www.datastax.com/docs/datastax_enterprise3.0/security/cqlsh_setup

• Cluster Performance Metrics

• Pending Task Metrics

• Column Family Metrics

When you add a graph, you choose the Metric and the source that OpsCenter uses to collect the data for the graph:

• Cluster wide

• All nodes

• The node running Opscenter

Several commonly-used performance metrics graphs are displayed initially. Data appears in the graphs after you set
alerts.

You can save, delete, and choose the default view of graphs. Click the link to save presets at the top of the Performance
area. The Save, Delete, and Make Default menu options are available after saving more than one view.

Cluster performance metrics
Cluster metrics are aggregated across all nodes in the cluster. Cluster metrics are a good way to monitor cluster
performance at a high level. OpsCenter tracks a number of cluster-wide metrics for read performance, write
performance, memory and capacity.

Watching for variations in cluster performance can signal potential performance issues that may require further
investigation. For general performance monitoring, watching for spikes in read and write latency, along with an
accumulation of pending operations can signal issues that may require further investigation. Drilling down on
high-demand column families can further pinpoint the source of performance issues with your application.

Write Requests

The number of write requests per second. Monitoring the number of requests over a given time period can give you and
idea of system write workload and usage patterns.

Write Request Latency

The response time (in milliseconds) for successful write requests. The time period starts when a node receives a client
write request, and ends when the node responds back to the client. Optimal or acceptable levels of write latency vary
widely according to your hardware, your network, and the nature of your write load. For example, the performance for a
write load consisting largely of granular data at low consistency levels would be evaluated differently from a load of large
strings written at high consistency levels.

Read Requests

The number of read requests per second. Monitoring the number of requests over a given time period can give you and
idea of system read workload and usage patterns.

Read Request Latency

The response time (in milliseconds) for successful read requests. The time period starts when a node receives a client
read request, and ends when the node responds back to the client. Optimal or acceptable levels of read latency vary
widely according to your hardware, your network, and the nature of your application read patterns. For example, the use
of secondary indexes, the size of the data being requested, and the consistency level required by the client can all
impact read latency. An increase in read latency can signal I/O contention. Reads can slow down when rows are
fragmented across many SSTables and compaction cannot keep up with the write load.

OpsCenter performance metrics

40

Cassandra JVM Memory Usage

The average amount of Java heap memory (in megabytes) being used by Cassandra processes. Cassandra opens the
JVM with a heap size that is half of available system memory by default, which still allows an optimal amount of memory
remaining for the OS disk cache. You may need to increase the amount of heap memory if you have increased column
family memtable or cache sizes and are getting out-of-memory errors. If you monitor Cassandra Java processes with an
OS tool such as top, you may notice the total amount of memory in use exceeds the maximum amount specified for the
Java heap. This is because Java allocates memory for other things besides the heap. It is not unusual for the total
memory consumption of the JVM to exceed the maximum value of heap memory.

JVM CMS Collection Count

The number of concurrent mark-sweep (CMS) garbage collections performed by the JVM per second. These are large,
resource-intensive collections. Typically, the collections occur every 5 to 30 seconds.

JVM CMS Collection Time

The time spent collecting CMS garbage in milliseconds per second (ms/sec).

Note
A ms/sec unit defines the number of milliseconds for garbage collection for each second that passes. For example, the
percentage of time spent on garbage collection in one millisecond (.001 sec) is 0.1%.

JVM ParNew Collection Count

The number of parallel new-generation garbage collections performed by the JVM per second. These are small and not
resource intensive. Normally, these collections occur several times per second under load.

JVM ParNew Collection Time

The time spent performing ParNew garbage collections in ms/sec. The rest of the JVM is paused during ParNew
garbage collection. A serious performance hit can result from spending a significant fraction of time on ParNew
collections.

Data Size

The size of column family data (in gigabytes) that has been loaded/inserted into Cassandra, including any storage
overhead and system metadata. DataStax recommends that data size not exceed 70 percent of total disk capacity to
allow free space for maintenance operations such as compaction and repair.

Total Bytes Compacted

The number of sstable data compacted in bytes per second.

Total Compactions

The number of compactions (minor or major) performed per second.

Pending task metrics
Pending task metrics track requests that have been received by a node, but are waiting to be processed. An
accumulation of pending tasks on a node can indicate a potential bottleneck in performance and should be investigated.

Cassandra maintains distinct thread pools for different stages of execution. Each of these thread pools provide granular
statistics on the number of pending tasks for that particular process. If you see pending tasks accumulating, it is

OpsCenter performance metrics

41

indicative of a cluster that is not keeping up with the workload. Essentially, pending tasks mean that things are backing
up, which is usually caused by a lack of (or failure of) cluster resources such as disk bandwidth, network bandwidth or
memory.

Pending Task Metrics for Writes

Pending tasks for the following metrics indicate that write requests are arriving faster than they can be handled.

Flushes Pending

The flush process flushes memtables to disk as SSTables. This metric shows the number of memtables queued for the
flush process. The optimal number of pending flushes is 0 (or at most a very small number). A value greater than 0
indicates either I/O contention or degrading disk performance (see disk metrics such as disk latency, disk throughput,
and disk utilization for indications of disk health).

Flush Sorter Tasks Pending

The flush sorter process performs the first step in the overall process of flushing memtables to disk as SSTables.

Memtable Post Flushers Pending

The memtable post flush process performs the final step in the overall process of flushing memtables to disk as
SSTables.

Write Requests Pending

The number of write requests that have arrived into the cluster but are waiting to be handled. During low or moderate
write load, you should see 0 pending write operations (or at most a very low number). A continuous high number of
pending writes signals a need for more capacity in your cluster or to investigate disk I/O contention.

Replicate on Write Tasks Pending

When an insert or update to a row is written, the affected row is replicated to all other nodes that manage a replica for
that row. This is called the ReplicateOnWriteStage. This metric tracks the pending tasks related to this stage of the write
process. During low or moderate write load, you should see 0 pending replicate on write tasks (or at most a very low
number). A continuous high number signals a need to investigate disk I/O or network contention problems.

Pending Task Metrics for Reads

Pending tasks for the following metrics indicate I/O contention, and can manifest in degrading read performance.

Read Requests Pending

The number of read requests that have arrived into the cluster but are waiting to be handled. During low or moderate
read load, you should see 0 pending read operations (or at most a very low number). A continuous high number of
pending reads signals a need for more capacity in your cluster or to investigate disk I/O contention. Pending reads can
also indicate an application design that is not accessing data in the most efficient way possible.

Read Repair Tasks Pending

The number of read repair operations that are queued and waiting for system resources in order to run. The optimal
number of pending read repairs is 0 (or at most a very small number). A value greater than 0 indicates that read repair
operations are in I/O contention with other operations. If this graph shows high values for pending tasks, this may
suggest the need to run a node repair to make nodes consistent. Or, for column families where your requirements can
tolerate a certain degree of stale data, you can lower the value of the column family parameter read_repair_chance.

OpsCenter performance metrics

42

Compactions Pending

An upper bound of the number of compactions that are queued and waiting for system resources in order to run. This is
a worst-case estimate. The compactions pending metric is often misleading. An unrealistic, high reading often occurs.
The optimal number of pending compactions is 0 (or at most a very small number). A value greater than 0 indicates that
read operations are in I/O contention with compaction operations, which usually manifests itself as declining read
performance. This is usually caused by applications that perform frequent small writes in combination with a steady
stream of reads. If a node or cluster frequently displays pending compactions, that is an indicator that you may need to
increase I/O capacity by adding nodes to the cluster. You can also try to reduce I/O contention by reducing the number
of insert/update requests (have your application batch writes for example), or reduce the number of SSTables created
by increasing the memtable size and flush frequency on your column families.

Pending Task Metrics for Cluster Operations

Pending tasks for the following metrics indicate a backup of cluster operational processes such as those maintaining
node consistency, system schemas, fault detection, and inter-node communications. Pending tasks for
resource-intensive operations (such as repair, bootstrap or decommission) are normal and expected while that operation
is in progress, but should continue decreasing at a steady rate in a healthy cluster.

Manual Repair Tasks Pending

The number of operations still to be completed when you run anti-entropy repair on a node. It will only show values
greater than 0 when a repair is in progress. Repair is a resource-intensive operation that is executed in stages:
comparing data between replicas, sending changed rows to the replicas that need to be made consistent, deleting
expired tombstones, and rebuilding row indexes and bloom filters. Tracking the state of this metric can help you
determine the progress of a repair operation. It is not unusual to see a large number of pending tasks when a repair is
running, but you should see the number of tasks progressively decreasing.

Gossip Tasks Pending

Cassandra uses a protocol called gossip to discover location and state information about the other nodes participating in
a Cassandra cluster. In Cassandra, the gossip process runs once per second on each node and exchanges state
messages with up to three other nodes in the cluster. Gossip tasks pending shows the number of gossip messages and
acknowledgments queued and waiting to be sent or received. The optimal number of pending gossip tasks is 0 (or at
most a very small number). A value greater than 0 indicates possible network problems (see network traffic for
indications of network health).

Hinted Handoff Pending

While a node is offline, other nodes in the cluster will save hints about rows that were updated during the time the node
was unavailable. When a node comes back online, its corresponding replicas will begin streaming the missed writes to
the node to catch it up. The hinted handoff pending metric tracks the number of hints that are queued and waiting to be
delivered once a failed node is back online again. High numbers of pending hints are commonly seen when a node is
brought back online after some down time. Viewing this metric can help you determine when the recovering node has
been made consistent again. Hinted handoff is an optional feature of Cassandra. Hints are saved for a configurable
period of time (an hour by default) before they are dropped. This prevents a large accumulation of hints caused by
extended node outages.

Internal Responses Pending

The number of pending tasks from various internal tasks such as nodes joining and leaving the cluster.

Migrations Pending

The number of pending tasks from system methods that have modified the schema. Schema updates have to be
propagated to all nodes, so pending tasks for this metric can manifest in schema disagreement errors.

OpsCenter performance metrics

43

Misc. Tasks Pending

The number of pending tasks from other miscellaneous operations that are not ran frequently.

Request Responses Pending

The progress of rows of data being streamed from the receiving node. Streaming of data between nodes happens
during operations such as bootstrap and decommission when one node sends large numbers of rows to another node.

Streams Pending

The progress of rows of data being streamed from the sending node. Streaming of data between nodes happens during
operations such as bootstrap and decommission when one node sends large numbers of rows to another node.

Column family performance metrics
Column family metrics allow you to drill down and locate specific areas of your application workloads that are the source
of performance issues. If you notice a performance trend at the OS or cluster level, viewing column family metrics can
provide a more granular level of detail.

The metrics for KeyCache Hits, RowCache Hits and SSTable Size can only be viewed on a single column family at a
time. Otherwise, all column family metrics are available for specific column families as well as for all column families on
a node.

In addition to monitoring read latency, write latency and load on a column family, you should also monitor the hit rates
on the key and row caches for column families that rely on caching for performance. The more requests that are served
from the cache, the better response times will be.

OpsCenter 3.0 and later has been optimized to handle thousands of column families efficiently. If a column family
experiences a dramatic dip in performance, check the Pending Tasks metric for a back-up in queued operations.

Viewing SSTable Size and SSTable Count for a specific column family (or counts for all families) can help with
compaction tuning.

CF: Local Writes

The write load on a column family measured in requests per second. This metric includes all writes to a given column
family, including write requests forwarded from other nodes. This metric can be useful for tracking usage patterns of
your application.

CF: Local Write Latency

The response time in milliseconds for successful write requests on a column family. The time period starts when nodes
receive a write request, and ends when nodes respond. Optimal or acceptable levels of write latency vary widely
according to your hardware, your network, and the nature of your write load. For example, the performance for a write
load consisting largely of granular data at low consistency levels would be evaluated differently from a load of large
strings written at high consistency levels.

CF: Local Reads

The read load on a column family measured in requests per second. This metric includes all reads to a given column
family, including read requests forwarded from other nodes. This metric can be useful for tracking usage patterns of your
application.

OpsCenter performance metrics

44

CF: Local Read Latency

The response time in milliseconds for successful reads on a column family. The time period starts when a node receives
a read request, and ends when the node responds. Optimal or acceptable levels of read latency vary widely according
to your hardware, your network, and the nature of your application read patterns. For example, the use of secondary
indexes, the size of the data being requested, and the consistency level required by the client can all impact read
latency. An increase in read latency can signal I/O contention. Reads can slow down when rows are fragmented across
many SSTables and compaction cannot keep up with the write load.

CF: KeyCache Requests

The total number of read requests on the row key cache.

CF: KeyCache Hits

The number of read requests that resulted in the requested row key being found in the key cache.

CF: KeyCache Hit Rate

The percentage of cache requests that resulted in a cache hit that indicates the effectiveness of the key cache for a
given column family. The key cache is used to find the exact location of a row on disk. If a row is not in the key cache, a
read operation will populate the key cache after accessing the row on disk so subsequent reads of the row can benefit.
Each hit on a key cache can save one disk seek per SSTable. If the hits line tracks close to the requests line, the
column family is benefiting from caching. If the hits fall far below the request rate, this suggests that you could take
actions to improve the performance benefit provided by the key cache, such as adjusting the number of keys cached.

CF: RowCache Requests

The total number of read requests on the row cache. This metric is only meaningful for column families with row caching
configured (it is not enabled by default).

CF: RowCache Hits

The number of read requests that resulted in the read being satisfied from the row cache. This metric is only meaningful
for column families with row caching configured (it is not enabled by default).

CF: Row Cache Hit Rate

The percentage of cache requests that resulted in a cache hit that indicates the effectiveness of the row cache for a
given column family. This metric is only meaningful for column families with row caching configured (it is not enabled by
default). The graph tracks the number of read requests in relationship to the number of row cache hits. If the hits line
tracks close to the requests line, the column family is benefiting from caching. If the hits fall far below the request rate,
this suggests that you could take actions to improve the performance benefit provided by the row cache, such as
adjusting the number of rows cached or modifying your data model to isolate high-demand rows.

CF: SSTable Size

The current size of the SSTables for a column family. It is expected that SSTable size will grow over time with your write
load, as compaction processes continue doubling the size of SSTables. Using this metric together with SSTable count,
you can monitor the current state of compaction for a given column family. Viewing these patterns can be helpful if you
are considering reconfiguring compaction settings to mitigate I/O contention.

OpsCenter performance metrics

45

CF: SSTable Count

The current number of SSTables for a column family. When column family memtables are persisted to disk as
SSTables, this metric increases to the configured maximum before the compaction cycle is repeated. Using this metric
together with SSTable size, you can monitor the current state of compaction for a given column family. Viewing these
patterns can be helpful if you are considering reconfiguring compaction settings to mitigate I/O contention.

CF: Pending Reads/Writes

The number of pending reads and writes on a column family. Pending operations are an indication that Cassandra is not
keeping up with the workload. A value of zero indicates healthy throughput. If out-of-memory events become an issue in
your Cassandra cluster, it may help to check cluster-wide pending tasks for operations that may be clogging throughput.

Bloom filters are used to avoid going to disk to try to read rows that don't actual exist.

CF: Bloom Filter Space Used

The size of the bloom filter files on disk. This grows based on the number of rows in a column family and is tunable
through the per-CF attribute, bloom_filter_fp_chance; increasing the value of this attribute shrinks the bloom filters
at the expense of a higher number of false positives. Cassandra reads the bloom filter files and stores them on the
heap, so large bloom filters can be expensive in terms of memory consumption.

Note
Bloom filters are used to avoid going to disk to try to read rows that don't actual exist.

CF: Bloom Filter False Positives

The number of false positives, which occur when the bloom filter said the row existed, but it actually did not exist in
absolute numbers.

CF: Bloom Filter False Positive Ratio

The fraction of all bloom filter checks resulting in a false positive. This should normally be at or below .01. A higher
reading indicates that the bloom filter is likely too small.

System performance metrics
As with any database system, Cassandra performance greatly depends on underlying systems on which it is running.
Tracking operating system metrics on your Cassandra nodes to watch for disk I/O, network, memory and CPU utilization
trends can help you identify and troubleshoot hardware-related performance problems.

Monitoring Cassandra nodes for increasing disk and CPU utilization can help identify and remedy issues before
performance degrades to unacceptable levels. The graphs in OpsCenter provide a quick way to view variations in OS
metrics at a glance, and drill-down for specific data points. Especially in systems with heavy write loads, monitoring disk
space is also important. It allows for advanced expansion planning while there is still adequate capacity to handle
expansion and rebalancing operations.

Memory

Shows memory usage metrics in megabytes.

Linux -- Shows how much total system memory is currently used, cached, buffered or free.

Windows -- Shows the available physical memory, the cached operating system code, and the allocated
pool-paged-resident and pool-nonpaged memory.

Mac OSX -- Shows free and used system memory.

OpsCenter performance metrics

46

CPU

Shows average percentages for CPU utilization metrics, which is the percentage of time the CPU was idle subtracted
from 100 percent. CPU metrics can be useful for determining the origin of CPU performance reduction.

Linux -- Shows how much time the CPU devotes to system and user processes, to tasks stolen by virtual operating
systems, to waiting for I/O to complete, and to processing nice tasks. High percentages of nice may indicate that other
processes are crowding out Cassandra processes, while high percentages of iowait may indicate I/O contention. On
fully virtualized environments like Amazon EC2, a Cassandra cluster under load may show high steal values while other
virtual processors use the available system resources.

Windows and Mac OSX -- Shows how much time the CPU spends on user processes and system processes.

Load

The amount of work that a computer system performs. An idle computer has a load number of 0 and each process using
or waiting for CPU time increments the load number by 1. Any value above one indicates that the machine was
temporarily overloaded and some processes were required to wait. Shows minimum, average, and maximum OS load
expressed as an integer.

Disk Usage (GB)

Tracks growth or reduction in the amount of available disk space used. If this metric indicates a growth trend leading to
high or total disk space usage, consider strategies to relieve it, such as adding capacity to the cluster. DataStax
recommends leaving 30-50% free disk space for optimal repair and compaction operations.

Disk Usage (%)

The percentage of disk space that is being used by Cassandra at a given time. When Cassandra is reading and writing
heavily from disk, or building SSTables as the final product of compaction processes, disk usage values may be
temporarily higher than expected.

Disk Throughput

The average disk throughput for read and write operations, measured in megabytes per second. Exceptionally high disk
throughput values may indicate I/O contention. This is typically caused by numerous compaction processes competing
with read operations. Reducing the frequency of memtable flushing can relieve I/O contention.

Disk Rates

Linux and Windows -- Averaged disk speed for read and write operations.

Mac OSX -- Not supported.

Disk Latency

Linux and Windows -- Measures the average time consumed by disk seeks in milliseconds. Disk latency is among the
higher-level metrics that may be useful to monitor on an ongoing basis by keeping this graph posted on your OpsCenter
performance console. Consistently high disk latency may be a signal to investigate causes, such as I/O contention from
compactions or read/write loads that call for expanded capacity.

Mac OSX -- Not supported.

Disk Request Size

Linux and Windows -- The average size in sectors of requests issued to the disk.

Mac OSX -- Not supported.

OpsCenter performance metrics

47

Disk Queue Size

Linux and Windows -- The average number of requests queued due to disk latency issues.

Mac OSX -- Not supported.

Disk Utilization

Linux and Windows -- The percentage of CPU time consumed by disk I/O.

Mac OSX -- Not supported.

Network Traffic

The speed at which data is received and sent across the network, measured in kilobytes per second.

Definitions of alert metrics
From the Alerts area of OpsCenter Enterprise Edition, you can configure alert thresholds for a number of Cassandra
cluster-wide, column family, and operating system metrics. This proactive monitoring feature is available only in
OpsCenter Enterprise Edition.

Commonly watched alert metrics
OpsCenter provides the capability to configure alerts for the following most commonly watched Cassandra and system
metrics.

Metric Definition

Node Down When a node is not responding to requests, it is marked as down.

Write Requests The number of write requests per second. Monitoring the number of writes over a
given time period can give you and idea of system write workload and usage
patterns.

Write Request Latency The response time (in milliseconds) for successful write operations. The time
period starts when a node receives a client write request, and ends when the node
responds back to the client.

Read Requests The number of read requests per second. Monitoring the number of reads over a
given time period can give you and idea of system read workload and usage
patterns.

Read Request Latency The response time (in milliseconds) for successful read operations. The time
period starts when a node receives a client read request, and ends when the node
responds back to the client.

CPU Usage The percentage of time that the CPU was busy, which is calculated by subtracting
the percentage of time the CPU was idle from 100 percent.

Load Load is a measure of the amount of work that a computer system performs. An
idle computer has a load number of 0 and each process using or waiting for CPU
time increments the load number by 1.

Advanced Cassandra alert metrics
OpsCenter provides the ability to configure alerts for the following Cassandra metrics. These metrics are aggregated
across all nodes in the cluster.

Metric Definition

Definitions of alert metrics

48

Heap Max The maximum amount of shared memory allocated to the JVM heap for Cassandra
processes.

Heap Used The amount of shared memory in use by the JVM heap for Cassandra processes.

JVM CMS Collection Count The number of concurrent mark-sweep (CMS) garbage collections performed by the
JVM per second.

JVM ParNew Collection
Count

The number of parallel new-generation garbage collections performed by the JVM per
second.

JVM CMS Collection Time The time spent collecting CMS garbage in milliseconds per second (ms/sec).

JVM ParNew Collection
Time

The time spent performing ParNew garbage collections in ms/sec.

Data Size The size of column family data (in gigabytes) that has been loaded/inserted into
Cassandra, including any storage overhead and system metadata.

Compactions Pending The number of compaction operations that are queued and waiting for system
resources in order to run. The optimal number of pending compactions is 0 (or at most
a very small number). A value greater than 0 indicates that read operations are in I/O
contention with compaction operations, which usually manifests itself as declining
read performance.

Total Bytes Compacted The number of sstable data compacted in bytes per second.

Total Compactions The number of compactions (minor or major) performed per second.

Flush Sorter Tasks Pending The flush sorter process performs the first step in the overall process of flushing
memtables to disk as SSTables. The optimal number of pending flushes is 0 (or at
most a very small number).

Flushes Pending The flush process flushes memtables to disk as SSTables. This metric shows the
number of memtables queued for the flush process. The optimal number of pending
flushes is 0 (or at most a very small number).

Gossip Tasks Pending Cassandra uses a protocol called gossip to discover location and state information
about the other nodes participating in a Cassandra cluster. In Cassandra, the gossip
process runs once per second on each node and exchanges state messages with up
to three other nodes in the cluster. Gossip tasks pending shows the number of gossip
messages and acknowledgments queued and waiting to be sent or received. The
optimal number of pending gossip tasks is 0 (or at most a very small number).

Hinted Handoff Pending While a node is offline, other nodes in the cluster will save hints about rows that were
updated during the time the node was unavailable. When a node comes back online,
its corresponding replicas will begin streaming the missed writes to the node to catch
it up. The hinted handoff pending metric tracks the number of hints that are queued
and waiting to be delivered once a failed node is back online again. High numbers of
pending hints are commonly seen when a node is brought back online after some
down time. Viewing this metric can help you determine when the recovering node has
been made consistent again.

Internal Responses Pending The number of pending tasks from various internal tasks such as nodes joining and
leaving the cluster.

Manual Repair Tasks
Pending

The number of operations still to be completed when you run anti-entropy repair on a
node. It will only show values greater than 0 when a repair is in progress. It is not
unusual to see a large number of pending tasks when a repair is running, but you
should see the number of tasks progressively decreasing.

Memtable Post Flushers
Pending

The memtable post flush process performs the final step in the overall process of
flushing memtables to disk as SSTables. The optimal number of pending flushes is 0
(or at most a very small number).

Definitions of alert metrics

49

Migrations Pending The number of pending tasks from system methods that have modified the schema.
Schema updates have to be propagated to all nodes, so pending tasks for this metric
can manifest in schema disagreement errors.

Misc. Tasks Pending The number of pending tasks from other miscellaneous operations that are not ran
frequently.

Read Requests Pending The number of read requests that have arrived into the cluster but are waiting to be
handled. During low or moderate read load, you should see 0 pending read operations
(or at most a very low number).

Read Repair Tasks Pending The number of read repair operations that are queued and waiting for system
resources in order to run. The optimal number of pending read repairs is 0 (or at most
a very small number). A value greater than 0 indicates that read repair operations are
in I/O contention with other operations.

Replicate on Write Tasks
Pending

When an insert or update to a row is written, the affected row is replicated to all other
nodes that manage a replica for that row. This is called the ReplicateOnWriteStage.
This metric tracks the pending tasks related to this stage of the write process. During
low or moderate write load, you should see 0 pending replicate on write tasks (or at
most a very low number).

Request Responses
Pending

Streaming of data between nodes happens during operations such as bootstrap and
decommission when one node sends large numbers of rows to another node. The
metric tracks the progress of the streamed rows from the receiving node.

Streams Pending Streaming of data between nodes happens during operations such as bootstrap and
decommission when one node sends large numbers of rows to another node. The
metric tracks the progress of the streamed rows from the sending node.

Write Requests Pending The number of write requests that have arrived into the cluster but are waiting to be
handled. During low or moderate write load, you should see 0 pending write
operations (or at most a very low number).

Advanced column family alert metrics
OpsCenter provides the capability to configure alerts for the following column family metrics. Column family metrics
provide a granular level of detail for certain Cassandra metrics as they relate to a particular column family.

Metric Definition

Local Writes The write load on a column family measured in operations per
second. This metric includes all writes to a given column family,
including write requests forwarded from other nodes.

Local Write Latency The response time in milliseconds for successful write operations on a
column family. The time period starts when nodes receive a write
request, and ends when nodes respond.

Local Reads The read load on a column family measured in operations per second.
This metric includes all reads to a given column family, including read
requests forwarded from other nodes.

Local Read Latency The response time in microseconds for successful read operations on
a column family. The time period starts when a node receives a read
request, and ends when the node responds.

CF: KeyCache Hits The number of read requests that resulted in the requested row key
being found in the key cache.

CF: KeyCache Requests The total number of read requests on the row key cache.

Definitions of alert metrics

50

CF: KeyCache Hit Rate The key cache hit rate indicates the effectiveness of the key cache for
a given column family by giving the percentage of cache requests that
resulted in a cache hit.

CF: RowCache Hits The number of read requests that resulted in the read being satisfied
from the row cache.

CF: RowCache Requests The total number of read requests on the row cache.

CF: RowCache Hit Rate The key cache hit rate indicates the effectiveness of the row cache for
a given column family by giving the percentage of cache requests that
resulted in a cache hit.

Live Disk Used The current size of live SSTables for a column family. It is expected
that SSTable size will grow over time with your write load, as
compaction processes continue doubling the size of SSTables. Using
this metric together with SSTable count, you can monitor the current
state of compaction for a given column family.

Total Disk Used The current size of the data directories for the column family including
space not reclaimed by obsolete objects.

SSTable Count The current number of SSTables for a column family. When column
family memtables are persisted to disk as SSTables, this metric
increases to the configured maximum before the compaction cycle is
repeated. Using this metric together with live disk used, you can
monitor the current state of compaction for a given column family.

Pending Reads/Writes The number of pending reads and writes on a column family. Pending
operations are an indication that Cassandra is not keeping up with the
workload. A value of zero indicates healthy throughput.

CF: Bloom Filter Space Used The size of the bloom filter files on disk.

CF: Bloom Filter False Positives The number of false positives, which occur when the bloom filter said
the row existed, but it actually did not exist in absolute numbers.

CF: Bloom Filter False Positive Ratio The fraction of all bloom filter checks resulting in a false positive.

Advanced system alert metrics
OpsCenter provides the capability to configure alerts for the following operating system metrics:

• Linux Metrics

• Windows Metrics

• Mac OSX Metrics

As with any database system, Cassandra performance greatly depends on underlying systems on which it is running. To
configure advanced system metric alerts, you should first have an understanding of the baseline performance of your
hardware and the averages of these system metrics when the system is handling a typical workload.

Linux metrics

On Linux, you can configure alerts on memory, cpu and disk events.

Memory metrics on Linux

Metric Definition

Memory Free System memory that is not being used.

Memory Used System memory used by application processes.

Definitions of alert metrics

51

Memory Buffered System memory used for caching file system metadata and tracking
in-flight pages.

Memory Shared System memory that is accessible to CPUs.

Memory Cached System memory used by the OS disk cache.

CPU metrics on Linux

Metric Definition

Idle Percentage of time the CPU is idle.

Iowait Percentage of time the CPU is idle and there is a pending disk I/O request.

Nice Percentage of time spent processing prioritized tasks. Niced tasks are also
counted in system and user time.

Steal Percentage of time a virtual CPU waits for a real CPU while the hypervisor
services another virtual processor.

System Percentage of time allocated to system processes.

User Percentage of time allocated to user processes.

Disk metrics on Linux

Metric Definition

Disk Usage Percentage of disk space Cassandra uses at a given time.

Free Disk Space Available disk space in GB.

Used Disk Space Used disk space in GB.

Disk Read Throughput Average disk throughput for read operations in megabytes per second.
Exceptionally high disk throughput values may indicate I/O contention.

Disk Write Throughput Average disk throughput for write operations in megabytes per second.

Disk Read Rate Averaged disk speed for read operations.

Disk Write Rate Averaged disk speed for write operations.

Disk Latency Average time consumed by disk seeks in milliseconds.

Disk Request Size Average size in sectors of requests issued to the disk.

Disk Queue Size Average number of requests queued due to disk latency.

Disk Utilization Percentage of CPU time consumed by disk I/O.

Windows metrics

On Windows, you can configure alerts on memory, cpu and disk events.

Memory metrics on Windows

Metric Definition

Available Memory Physical memory that is not being used.

Pool Nonpaged Physical memory that stores the kernel and other system data structures.

Pool Paged Resident Physical memory allocated to unused objects that can be written to disk to
free memory for reuse.

System Cache Resident Physical pages of operating system code in the file system cache.

CPU metrics on Windows

Definitions of alert metrics

52

Metric Definition

Idle Percentage of time the CPU is idle.

Privileged Percentage of time the CPU spends executing kernel commands.

User Percentage of time allocated to user processes.

Disk metrics on Windows

Metric Definition

Disk Usage Percentage of disk space Cassandra uses at a given time.

Free Disk Space Available disk space in GB.

Used Disk Space Used disk space in GB.

Disk Read Throughput Average disk throughput for read operations in megabytes per second.
Exceptionally high disk throughput values may indicate I/O contention.

Disk Write Throughput Average disk throughput for write operations in megabytes per second.

Disk Read Rate Averaged disk speed for read operations.

Disk Write Rate Averaged disk speed for write operations.

Disk Latency Average time consumed by disk seeks in milliseconds.

Disk Request Size Average size of requests in KB issued to the disk.

Disk Queue Size Average number of requests queued due to disk latency.

Disk Utilization Percentage of CPU time consumed by disk I/O.

Mac OSX metrics

On Mac OSX, you can configure alerts on memory, cpu and disk events.

Memory metrics on Mac OSX

Metric Definition

Free Memory System memory that is not being used.

Used Memory System memory that is being used by application processes.

CPU metrics on Mac OSX

Metric Definition

Idle Percentage of time the CPU is idle.

System Percentage of time allocated to system processes.

User Percentage of time allocated to user processes

Disk metrics on Mac OSX

Metric Definition

Disk Usage Percentage of disk space Cassandra uses at a given time.

Free Space Available disk space in GB.

Used Disk Space Used disk space in GB.

Disk Throughput Average disk throughput for read/write operations in megabytes per
second. Exceptionally high disk throughput values may indicate I/O
contention.

Definitions of alert metrics

53

Managing backups and restoring from backups
Using OpsCenter Enterprise Edition, you can take, schedule, and manage backups across all registered clusters.

A backup is a snapshot of all on-disk data files (SSTable files) stored in the data directory. Backups are taken per
keyspace and while the system is online. A backup first flushes all in-memory writes to disk, then makes a hard link of
the SSTable files for each keyspace. Backups are stored in the snapshots directory of the column family that's being
snapshotted. For example, /var/lib/cassandra/data/cfs/snapshots.

You must have enough free disk space on the node to accommodate making snapshots of your data files. A single
snapshot requires little disk space. However, snapshots will cause your disk usage to grow more quickly over time
because a snapshot prevents old obsolete data files from being deleted. OpsCenter Data Backups allows you to specify
a schedule to remove old backups and prevent backups from being taken when disk space falls below a specified level.

Note
OpsCenter Data Backups does not show or manage manual snapshots taken using the nodetool snapshot command.

Scheduling a backup
To schedule a backup:

1. In the OpsCenter Dashboard, click Data Backups.

2. Click Schedule Backup.

3. In Add Backup, select the backup parameters:

• Select a Keyspace to backup - Select the keyspace that you want to back up.

• Schedule - Select a frequency and timezone for your backup. GMT is the default timezone.

• Cleanup - Choose a frequency to remove old backups. (If not specified, you should manually cleanup
snapshots.)

4. Click Save.

5. To set the percentage of free disk space at which backups are prevented, click Configure and then enter the
appropriate information.

The percentage of free disk space that you set applies to all nodes in the cluster.

Detailed information about the backup is recorded in the Event Log.

Restoring from a backup
You can restore from any local backups that have been run by OpsCenter, but not from snapshots run from nodetool.
You can pick any subset of column families that exist in the snapshot to restore.

To restore a backup:

1. Click Data Backups.

2. Find the backup you wish to restore in the list of backups.

3. Click Restore.

4. Choose which keyspaces to retore.

5. (Optional) Choose individual column families within a chosen keyspace to restore.

6. (Optional) Click the Truncate/delete existing data before restore checkbox.

7. (Optional) Click the Throttle stream throughput at ____ MB chekbox and enter the desired throttling value.

8. Click Restore.

Managing backups and restoring from backups

54

http://www.datastax.com/docs/1.2/operations/backup_restore
http://www.datastax.com/docs/1.2/references/nodetool#nodetool-snapshot

Data modeling in OpsCenter
In the Data Modeling area of OpsCenter, you can:

• View keyspace properties

• Create keyspaces

• Delete keyspaces

• Create new column families

• View column family properties

• Manage performance metrics on column families, such as setting, truncating, or deleting metrics

Keyspace operations
Selecting the Data Modeling area in the OpsCenter console lists the keyspaces in the cluster that you are monitoring.
You can create a new keyspace or manage keyspaces.

When you create a keyspace, you give it a name, choose a replica placement strategy, the total number of replicas you
want, and how those replicas are divided across your data centers (if you have a multiple data center cluster).

Creating a keyspace

To create a new keyspace:

1. Select Schema in the OpsCenter console.

2. Select Add in the Schema section of OpsCenter.

3. Give the keyspace a name. Keyspace names should not contain spaces or special characters or exceed the
filename size limit of your operating system (for example, 255 bytes on most Linux file systems). Keyspace names
are case sensitive.

4. Set the replica placement strategy. The replica placement strategy (along with the cluster-configured snitch)
determines how replicas are placed on nodes throughout the cluster. Use one of three built-in replica placement
strategies:

• SimpleStrategy - Single data center, rack unaware replica placement. This is the default strategy.

• NetworkTopologyStrategy - Single or multiple data center, rack aware replica placement. This is the
recommended strategy.

• OldNetworkTopologyStrategy - Two data centers only, rack aware replica placement. This strategy is
deprecated.

5. Choose how many total copies that you want of your keyspace data (replication factor). The
NetworkTopologyStrategy requires you to configure how many replicas you want per data center. The data center
name you enter should match the data center name used by your cluster-configured snitch. Make sure to name
the data center(s) correctly according to your snitch configuration.

6. If you do not want to start defining column families within your new keyspace right away, uncheck the I would like
to create a Column Family checkbox.

7. Click Save Keyspace.

Managing keyspaces

To manage keyspaces:

1. Select Schema in the OpsCenter console.

Data modeling in OpsCenter

55

2. From the list of keyspaces, select one of the keyspaces.

In Keyspace Settings, the replica placement strategy options for the keyspace appear.

3. From the list of column families (below Settings), select a column family to view its properties and to view or
change performance tuning metrics.

4. Click Add in the Column Family to add a column family to the keyspace.

5. Click Delete to delete the keyspace.

Column family management
When you create a column family in Cassandra using an application, the CLI, or CQL 2 or earlier, the column family
appears in OpsCenter. You can use Schema to manage the column family.

You can also create one type of column family: the dynamic column family. Dynamic column families are those that do
not specify column names or values when the column family is created. An application typically supplies this metadata.
CQL 3, the default query language in Cassandra, does not support dynamic column families. Earlier versions of CQL
and the CLI support dynamic column families.

This version of OpsCenter does not support defining static column families (per-column meta data), row key data types,
or schema information for super column sub-columns described in Cassandra 1.0, or earlier, documentation on
http://www.datastax.com.

Creating a dynamic column family

To create a new dynamic column family:

1. Select Schema in the OpsCenter console.

2. From the list of keyspaces, select the keyspace to contain the column family.

3. Give the column family a name.

Column family names should not contain spaces or special characters and cannot exceed the filename size limit
of your operating system (255 bytes on most Linux file systems).

By default, column families are created with standard columns (column_type: Standard). If you want a column
family containing super columns choose column_type: Super.

4. Use compare_with to set the default data type for column names (or super column names).

Setting the default data type also sets the column sort order for the column family. For example, choosing
LongType would sort the columns within a row in numerical order. The sort order cannot be changed after a
column family is created, so choose wisely.

5. Use default_validation_class to set the default data type for column values (or super column sub-column
values). Always set this for dynamic column families.

6. Click Save Column Family.

Managing column families

To manage column families:

1. Select Schema in the OpsCenter console.

2. From the list of keyspaces, select a keyspace.

The #CFs columns shows how many column families each keyspace contains.

Data modeling in OpsCenter

56

http://www.datastax.com

3. From the list of the column families, select a column family. Click one of the following buttons:

• Add

See above.

• Delete

Completely removes the column family from the keyspace. You may select more than one column family in
a keyspace to delete.

• View Metrics

Presents metrics for a column family. In the Metric Options dialog, select a column family (CF) metric to
view. To aggregate measurements across the entire cluster, all nodes in the data center, or in a particular
node, select Cluster Wide, All Nodes, or the IP address of a node. At this point, you can add a graph of the
measurements to the Performance Metrics area, or choose a different column family to measure.

• Truncate

Deletes all data from the column family but does not delete the column family itself. Removal of the data is
irreversible.

4. When you select a column family, you see a list of manageable attributes: Properties (fully editable), Metadata
(Add or Delete), and Secondary Indexes (Add or Delete).

Browsing the database
Use the Data Explorer area to browse the keyspaces, column families, and data stored in the Cassandra database of a
cluster and to zoom in on the columns of a particular row.

To browse the Cassandra database:

1. Select Data Explorer in the OpsCenter console.

A list of keyspaces in the cluster appears. By default, the list includes the OpsCenter keyspace, which contains
column families of data in the cluster.

2. Click one of the keyspaces. For example, click the OpsCenter keyspace.

The list of column families appears.

3. Click a column family. For example, click events_timeline and expand the OpsCenter console window, so
you can see more values.

A row keys, columns, and data values of the events_timeline column family appear in tabular format. You
may notice that some data values are hex-encoded, not human-readable values, and other values are perfectly
readable. Internally, Cassandra stores row key names, column names and column values as hex byte arrays. If
possible, OpsCenter converts data to text you can read.

4. Click the heading row of the table to see the sort control (the arrow on the right). Toggle the sort control to sort the
rows in ascending or descending order.

5. To browse through the data, use the scroll bar or click Next to page through the data.

To zoom in on a particular row:

1. Assuming the events_timeline column family is still selected, type the key for a row in the Key text entry box. For
example, type the row key timeline_start.

If you set up a secondary index on the column family, the Key drop-down lists key choices.

2. Click the search control (the hourglass icon).

The columns and values of the row appear.

Browsing the database

57

Upgrading OpsCenter
This section contains information about upgrading OpsCenter and OpsCenter agents. The following upgrade paths are
available:

• Upgrading package installations

• Upgrading tarball installations

• Upgrading OpsCenter agents

Before upgrading, check that the Cassandra or DataStax Enterprise version is compatible with the upgraded OpsCenter
version:

OpsCenter Version Cassandra Version DataStax Enterprise Version

3.1 1.0, 1.1, 1.2 1.0, 2.0, 2.1, 2.2, 3.0.x

3.0 1.0, 1.1, 1.2 1.0, 2.0, 2.1, 2.2, 3.0

2.1.3 0.8, 1.0, 1.1, 1.2 1.0, 2.0, 2.1, 2.2

2.1 0.8, 1.0, 1.1 1.0, 2.0, 2.1, 2.2

2.0 0.8, 1.0, 1.1 1.0, 2.0

1.4.x 0.7, 0.8, 1.0, 1.1 1.0, 2.0

Upgrading package installations
Use the information in this section to upgrade to OpsCenter 3.0 from 2.1.x, 2.0, 1.4.x, or 1.3.x.

To upgrade to OpsCenter 3.0:

These steps describe installing the new OpsCenter package and restarting the opscenterd daemon.

1. On the OpsCenter daemon host, run the appropriate command to update the packages:

Debian/Ubuntu:

apt-get update

RHEL/CentOS:

yum clean all

2. Install the upgraded OpsCenter package:

Debian/Ubuntu:

apt-get install opscenter

RHEL/CentOS:

yum install opscenter

3. If the package manager prompts you for options regarding opscenterd.conf, choose to keep your currently
installed version.

Upgrading OpsCenter

58

4. Restart the OpsCenter daemon.

service opscenterd restart

Upgrading tarball installations

1. Download and extract the new tarball.

2. Copy the following files and directories from the old tarball installation directory to the new one:

conf/clusters/*
conf/event-plugins/*
conf/install_id
conf/log4j.properties
conf/opscenterd.conf
conf/ssl.conf
ssl/*

3. Stop the opscenterd instance (if it is running) and start it from the new tarball installation directory.

4. Upgrade the agents either through the UI or by manually installing from the new tarballs.

Upgrading OpsCenter agents
If OpsCenter agents require upgrading for the new release, you are prompted to do by a Fix link located near the top of
the OpsCenter console:

For information about installing the upgraded agents, see Installing OpsCenter agents.

From tarballs
If the agents will be upgraded manually with tarballs, copy the new agent.tar.gz to all nodes, extract it, and copy the
following files from the old agent tarball directories to the new ones:

conf/*
ssl/*

Upgrading tarball installations

59

OpsCenter reference
This section contains miscellaneous information about OpsCenter.

• OpsCenter and OpsCenter agent ports

• Starting and stopping OpsCenter and its agents

• Debian and Ubuntu Package install locations

• CentOS, OEL, and RHEL Package install locations

• Binary Tarball distribution install locations

OpsCenter and OpsCenter agent ports
The following table lists the default port numbers used by OpsCenter and the OpsCenter Agents:

Port Description

OpsCenter ports

8888 OpsCenter website. The opscenterd daemon listens on this port for HTTP requests coming
directly from the browser. Configurable in opscenterd.conf.

50031 OpsCenter HTTP proxy for Job Tracker. The opscenterd daemon listens on this port for
incoming HTTP requests from the browser when viewing the Hadoop Job Tracker page directly.
(DataStax Enterprise only)

61620 OpsCenter monitoring port. The opscenterd daemon listens on this port for TCP traffic coming
from the agent.

OpsCenter agents ports (on the monitored nodes)

7199 JMX monitoring port. Each agent opens a JMX connection to its local node (the Cassandra or
DataStax Enterprise process listening on this port). The JMX protocol requires that the client
then reconnect on a randomly chosen port (1024+) after the initial handshake.

8012 Hadoop Job Tracker client port. The Job Tracker listens on this port for job submissions and
communications from task trackers; allows traffic from each Analytics node in a DataStax
Enterprise cluster.

9290 Hadoop Job Tracker Thrift port. The Job Tracker listens on this port for Thrift requests coming
from the opscenterd daemon. (DataStax Enterprise only)

50030 Hadoop Job Tracker website port. The Job Tracker listens on this port for HTTP requests. If
initiated from the OpsCenter UI, these requests are proxied through the opscenterd daemon;
otherwise, they come directly from the browser. (DataStax Enterprise only)

50060 Hadoop Task Tracker website port. Each Task Tracker listens on this port for HTTP requests
coming directly from the browser and not proxied by the opscenterd daemon. (DataStax
Enterprise only)

61621 OpsCenter agent port. The agents listen on this port for SSL traffic initiated by OpsCenter.

22 SSH port. Configurable in opscenterd.conf.

Solr Port and Demo applications port

8983 Solr Port and Demo applications port.

Cassandra client port

9160 Each agent makes Thrift requests to its local node on this port. Additionally, the port can be
used by the opscenterd daemon to make Thrift requests to each node in the cluster.

OpsCenter reference

60

Debian and Ubuntu Package install locations
These packages are installed into the following directories:

• /var/lib/opscenter (SSL certificates for encrypted agent/dashboard communications)

• /var/log/opscenter (log directory)

• /var/run/opscenter (runtime files)

• /usr/share/opscenter (JAR, agent, web application, and binary files)

• /etc/opscenter (configuration files)

• /etc/init.d (service startup script)

CentOS, OEL, and RHEL Package install locations
These packages are installed into the following directories:

• /var/lib/opscenter (SSL certificates for encrypted agent/dashboard communications)

• /var/log/opscenter (log directory)

• /var/run/opscenter (runtime files)

• /usr/share/opscenter (JAR, agent, web application, and binary files)

• /etc/opscenter (configuration files)

• /etc/init.d (service startup script)

Binary Tarball distribution install locations
The tar installation creates the following directories in the <install_location> directory:

• /agent (agent installation files)

• /bin (startup and configuration binaries)

• /conf (configuration files)

• /content (web application files)

• /doc (license files)

• /lib and /src (library files)

• /log (OpsCenter log files)

• /ssl (SSL files for OpsCenter to agent communications)

Debian and Ubuntu Package install locations

61

OpsCenter API
The OpsCenter API facilitates the development of websites and programs to retrieve data and perform Cassandra
administrative actions. The OpsCenter API includes RESTful requests for programmatically performing the same set of
operations as the OpsCenter GUI.

The documentation includes examples of each API method and is organized as follows:

• Authentication describes how to authenticate when users and roles are configured.

• OpsCenter Configuration covers methods for getting information about clusters, such as seed hosts and the JMX
port, adding a new cluster to OpsCenter, updating a cluster, and removing a cluster.

• Managing Cluster Configurations includes methods for reading and setting the cassandra.yaml for one or more
nodes as well as setting the DSE node type.

• Retrieving Cluster and Node Information describes methods for getting more information about clusters, such as
the endpoint snitch and partitioner name, information about a particular cluster property, nodes in the cluster, and
node properties.

• Performing Cluster Operations describes methods for performing garbage compaction, flushing memtables, and
other administrative actions on nodes and keyspaces.

• Managing Keyspaces and Column Families describes keyspace and column family operations, such as creating
new keyspaces and column families.

• Retrieving Metric Data explains how to measure the performance of clusters, nodes, and column families.

• Managing Events and Alerts includes documentation about methods for getting information about events and
alerts and setting alert rules.

• Snapshot Management and Restoring from Snapshots describes methods for scheduling and running data
snapshots and backups, getting information about existing snapshots, and restoring keyspaces and column
families from snapshots.

• Hadoop Status shows how to get information about the current status of the Hadoop infrastructure in your DSE
cluster.

• Provisioning New Nodes and Clusters details methods for creating new Cassandra and DSE nodes and clusters
through OpsCenter, including launching Amazon EC2 instances to host the nodes.

This document contains the following sections:

Authentication
OpsCenter uses basic HTTP authentication when users and roles are configured. How your program authenticates
depends on the library or tool you use. A example using cURL is provided.

Example:

curl http://127.0.0.1:8888/Test_Cluster/cluster
 -u <userid>:<password>

OpsCenter Configuration
You can manage the OpsCenter configuration for monitored clusters using these HTTP methods:

OpsCenter Configuration Management Methods URL

List configuration information for all clusters. GET /cluster-configs

List configuration information for a cluster. GET /cluster-configs/{cluster_id}

OpsCenter API

62

Add a new cluster to OpsCenter. POST /cluster-configs

Update a cluster configuration. PUT /cluster-configs/{cluster_id}

Remove a cluster from OpsCenter management. DELETE /cluster-configs/{cluster_id}

Getting Existing OpsCenter Cluster Configurations

GET/cluster-configs
Retrieve a list of all configured clusters.
Returns a dictionary of cluster id (key), ClusterConfig objects (value). Each cluster configuration includes a
seed_hosts entry (required).

Cluster Config

{
 <section-name>: {
 <prop-name>: <prop-value>,
 ...
 },
 ...
}

Example:

curl http://127.0.0.1:8888/cluster-configs

Output:

{
 "Test_Cluster": {
 "cassandra": {
 "agents": {
 "use_ssl": "false"
 },
 "seed_hosts": "localhost"
 },
 "cassandra_metrics": {},
 "jmx": {
 "port": 7199
 }
 },
 "Test_Cluster2": {
 "cassandra" {
 "seed_hosts": "2.3.4.5, 2.3.4.6",
 "api_port": 9160
 },
 "cassandra_metrics": {},
 "jmx": {
 "port": 7199,
 "username": "jmx_user",
 "password": "jmx_pass"
 }
 }
}

GET/cluster-configs/cluster_id

OpsCenter API

63

Retrieve the configuration for a single cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a Cluster Config.
Example:

curl http://127.0.0.1:8888/cluster-configs/Test_Cluster

Output:

{
 "agents": {},
 "cassandra": {
 "seed_hosts": "1.2.3.4, 1.2.3.5"
 },
 "cassandra_metrics": {},
 "jmx": {
 "port": 7199
 }
}

Adding, Updating, and Removing Configured Clusters

POST/cluster-configs
Add a new cluster for OpsCenter monitoring and administration.

Body : A configuration in the format of Cluster Config. A seed_hosts entry is required.

Responses: 201 -- Cluster was added successfully

Returns the ID of the new cluster.
Example:

curl -X POST
 http://127.0.0.1:8888/cluster-configs
 -d '{
 "cassandra": {
 "seed_hosts": "localhost"
 },
 "cassandra_metrics": {},
 "jmx": {
 "port": "7199"
 }
 }'

Output:

"Test_Cluster"

PUT/cluster-configs/cluster_id
Update a cluster configuration.

Path
arguments:

cluster_id -- A Cluster Config ID.

Body : A configuration in the same format as Cluster Config. A seed_hosts entry is required.

Responses: 204 -- Cluster updated successfully

Example:

OpsCenter API

64

curl -X PUT
 http://127.0.0.1:8888/cluster-configs/Test_Cluster
 -d '{
 "cassandra": {
 "seed_hosts": "192.168.1.1, 192.168.1.2"
 },
 "jmx": {
 "port": "7199"
 }
 }'

DELETE/cluster-configs/cluster_id
Remove a cluster from the list of those to be managed and monitored by OpsCenter.

Path
arguments:

cluster_id -- A Cluster Config ID.

Responses: 204 -- Cluster removed successfully

Example:

curl -X DELETE http://127.0.0.1:8888/cluster-configs/Test_Cluster

Managing Cluster Configurations
The following HTTP methods allow you to view and edit the cassandra.yaml configuration and set the DSE node type for
some or all of the nodes in a cluster.

Cluster Configuration Management Methods URL

Read the cassandra.yaml contents for a single node. GET /{cluster_id}/nodeconf/{node_ip}/

Set the cassandra.yaml contents for a single node. POST /{cluster_id}/nodeconf/{node_ip}/

Read the cassandra.yaml contents for one or all DCs. GET /{cluster_id}/clusterconf/{dc}/

Set the cassandra.yaml contents for one or all DCs. POST /{cluster_id}/clusterconf/{dc}/

Get the DSE role for a node. GET /{cluster_id}/dseconf/{node_ip}/nodetype

Set the DSE role for a node. POST /{cluster_id}/dseconf/{node_ip}/nodetype

cassandra.yaml Configuration

GET/cluster_id/nodeconf/node_ip/
Get the contents of the cassandra.yaml configuration file for a single node in the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.
Format : If the Accept header is text/yaml or is not specified, the configuration will be returned as YAML.

If the Accept type is text/json, the configuration will be returned as JSON.

Example:

curl http://127.0.0.1:8888/Test_Cluster/nodeconf/192.168.1.1

Output:

Managing Cluster Configurations

65

index_interval: 128
rpc_timeout_in_ms: 10000
compaction_throughput_mb_per_sec: 16
authority: org.apache.cassandra.auth.AllowAllAuthority
compaction_preheat_key_cache: true
row_cache_size_in_mb: 0
thrift_max_message_length_in_mb: 16
flush_largest_memtables_at: 0.75
in_memory_compaction_limit_in_mb: 64
rpc_server_type: sync
multithreaded_compaction: false
trickle_fsync: false
hinted_handoff_throttle_delay_in_ms: 1
row_cache_save_period: 0
hinted_handoff_enabled: true
cluster_name: Test Cluster
ssl_storage_port: 7001
populate_io_cache_on_flush: false
seed_provider:
- class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - {seeds: 192.168.1.1, 192.168.1.2}
dynamic_snitch_reset_interval_in_ms: 600000
storage_port: 7000
request_scheduler: org.apache.cassandra.scheduler.NoScheduler
rpc_port: 9160
row_cache_provider: SerializingCacheProvider
reduce_cache_capacity_to: 0.6
saved_caches_directory: /var/lib/cassandra/saved_caches
max_hint_window_in_ms: 3600000
commitlog_sync: periodic
thrift_framed_transport_size_in_mb: 15
key_cache_save_period: 14400
authenticator: org.apache.cassandra.auth.AllowAllAuthenticator
dynamic_snitch_badness_threshold: 0.1
commitlog_directory: /var/lib/cassandra/commitlog
column_index_size_in_kb: 64
trickle_fsync_interval_in_kb: 10240
snapshot_before_compaction: false
concurrent_reads: 32
endpoint_snitch: org.apache.cassandra.locator.SimpleSnitch
encryption_options:
 keystore: conf/.keystore
 protocol: TLS
 algorithm: SunX509
 cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA]
 truststore_password: cassandra
 truststore: conf/.truststore
 internode_encryption: none
 keystore_password: cassandra
 store_type: JKS
concurrent_writes: 32
data_file_directories: [/var/lib/cassandra/data]
auto_snapshot: true
partitioner: org.apache.cassandra.dht.RandomPartitioner
dynamic_snitch_update_interval_in_ms: 100

Managing Cluster Configurations

66

commitlog_segment_size_in_mb: 32
rpc_keepalive: true
reduce_cache_sizes_at: 0.85
incremental_backups: false
commitlog_sync_period_in_ms: 10000
memtable_flush_queue_size: 4
rpc_address: 0.0.0.0
listen_address: 192.168.1.1
initial_token: null

JSON Format Example

curl
 -H 'Accept: text/json'
 http://127.0.0.1:8888/Test_Cluster/nodeconf/192.168.1.1

Output:

Cassandra Config
This Cassandra Config object is just a JSON representation of a cassandra.yaml file. The actual attributes and
values will vary depending on what version of Cassandra or DSE is being used.

{
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 "cluster_name": "Test Cluster",
 "column_index_size_in_kb": 64,
 "commitlog_directory": "/var/lib/cassandra/commitlog",
 "commitlog_segment_size_in_mb": 32,
 "commitlog_sync": "periodic",
 "commitlog_sync_period_in_ms": 10000,
 "compaction_preheat_key_cache": true,
 "compaction_throughput_mb_per_sec": 16,
 "concurrent_reads": 32,
 "concurrent_writes": 32,
 "data_file_directories": [
 "/var/lib/cassandra/data"
],
 "dynamic_snitch_badness_threshold": 0.1,
 "dynamic_snitch_reset_interval_in_ms": 600000,
 "dynamic_snitch_update_interval_in_ms": 100,
 "encryption_options": {
 "algorithm": "SunX509",
 "cipher_suites": [
 "TLS_RSA_WITH_AES_128_CBC_SHA",
 "TLS_RSA_WITH_AES_256_CBC_SHA"
],
 "internode_encryption": "none",
 "keystore": "conf/.keystore",
 "keystore_password": "cassandra",
 "protocol": "TLS",
 "store_type": "JKS",
 "truststore": "conf/.truststore",
 "truststore_password": "cassandra"
 },
 "endpoint_snitch": "org.apache.cassandra.locator.SimpleSnitch",

Managing Cluster Configurations

67

 "flush_largest_memtables_at": 0.75,
 "hinted_handoff_enabled": true,
 "hinted_handoff_throttle_delay_in_ms": 1,
 "in_memory_compaction_limit_in_mb": 64,
 "incremental_backups": false,
 "index_interval": 128,
 "initial_token": null,
 "key_cache_save_period": 14400,
 "listen_address": "192.168.1.1",
 "max_hint_window_in_ms": 3600000,
 "memtable_flush_queue_size": 4,
 "multithreaded_compaction": false,
 "partitioner": "org.apache.cassandra.dht.RandomPartitioner",
 "populate_io_cache_on_flush": false,
 "reduce_cache_capacity_to": 0.6,
 "reduce_cache_sizes_at": 0.85,
 "request_scheduler": "org.apache.cassandra.scheduler.NoScheduler",
 "row_cache_provider": "SerializingCacheProvider",
 "row_cache_save_period": 0,
 "row_cache_size_in_mb": 0,
 "rpc_address": "0.0.0.0",
 "rpc_keepalive": true,
 "rpc_port": 9160,
 "rpc_server_type": "sync",
 "rpc_timeout_in_ms": 10000,
 "saved_caches_directory": "/var/lib/cassandra/saved_caches",
 "seed_provider": [
 {
 "class_name": "org.apache.cassandra.locator.SimpleSeedProvider",
 "parameters": [
 {
 "seeds": "192.168.1.1, 192.168.1.2"
 }
]
 }
],
 "snapshot_before_compaction": false,
 "ssl_storage_port": 7001,
 "storage_port": 7000,
 "thrift_framed_transport_size_in_mb": 15,
 "thrift_max_message_length_in_mb": 16,
 "trickle_fsync": false,
 "trickle_fsync_interval_in_kb": 10240
}

POST/cluster_id/nodeconf/node_ip/
Set the contents of the cassandra.yaml configuration file for a single node in the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.
Body : A YAML or JSON representation of the cassandra.yaml configuration for the node. If a JSON

format is used, the Accept header should be set to text/json.

Example:

Managing Cluster Configurations

68

curl
 -X POST
 http://127.0.0.1:8888/Test_Cluster/nodeconf/192.168.1.1
 -d
 'index_interval: 128
 rpc_timeout_in_ms: 10000
 compaction_throughput_mb_per_sec: 16
 authority: org.apache.cassandra.auth.AllowAllAuthority
 compaction_preheat_key_cache: true
 row_cache_size_in_mb: 0
 thrift_max_message_length_in_mb: 16
 flush_largest_memtables_at: 0.75
 in_memory_compaction_limit_in_mb: 64
 rpc_server_type: sync
 multithreaded_compaction: false
 trickle_fsync: false
 hinted_handoff_throttle_delay_in_ms: 1
 row_cache_save_period: 0
 hinted_handoff_enabled: true
 cluster_name: Test Cluster
 ssl_storage_port: 7001
 populate_io_cache_on_flush: false
 seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - {seeds: 192.168.1.1, 192.168.1.2}
 dynamic_snitch_reset_interval_in_ms: 600000
 storage_port: 7000
 request_scheduler: org.apache.cassandra.scheduler.NoScheduler
 rpc_port: 9160
 row_cache_provider: SerializingCacheProvider
 reduce_cache_capacity_to: 0.6
 saved_caches_directory: /var/lib/cassandra/saved_caches
 max_hint_window_in_ms: 3600000
 commitlog_sync: periodic
 thrift_framed_transport_size_in_mb: 15
 key_cache_save_period: 14400
 authenticator: org.apache.cassandra.auth.AllowAllAuthenticator
 dynamic_snitch_badness_threshold: 0.1
 commitlog_directory: /var/lib/cassandra/commitlog
 column_index_size_in_kb: 64
 trickle_fsync_interval_in_kb: 10240
 snapshot_before_compaction: false
 concurrent_reads: 32
 endpoint_snitch: org.apache.cassandra.locator.SimpleSnitch
 encryption_options:
 keystore: conf/.keystore
 protocol: TLS
 algorithm: SunX509
 cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA]
 truststore_password: cassandra
 truststore: conf/.truststore
 internode_encryption: none
 keystore_password: cassandra
 store_type: JKS
 concurrent_writes: 32

Managing Cluster Configurations

69

 data_file_directories: [/var/lib/cassandra/data]
 auto_snapshot: true
 partitioner: org.apache.cassandra.dht.RandomPartitioner
 dynamic_snitch_update_interval_in_ms: 100
 commitlog_segment_size_in_mb: 32
 rpc_keepalive: true
 reduce_cache_sizes_at: 0.85
 incremental_backups: false
 commitlog_sync_period_in_ms: 10000
 memtable_flush_queue_size: 4
 rpc_address: 0.0.0.0
 listen_address: 192.168.1.1
 initial_token: null'

GET/cluster_id/nodeconf/dc/
Similar to GET /{cluster_id}/nodeconf/{node_ip}/, but collects the configuration for all nodes in one or all
datacenters. Properties that are specific to a single node, such as listen_address, rpc_address, and
broadcast_address will not be included in the returned config.
An error message is returned if properties that are not specific to a single node differ from one node to another in a
cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• dc -- The name of a datacenter to collect configs for. Use the special value all to collect
configs from all datacenters.

Query params: allow_down_nodes -- "0" to require all specified nodes to be up. "1" to return the conf from
only the nodes that are available. Defaults to "1"

Format : If the Accept header is text/yaml or is not specified, the configuration will be returned as YAML.
If the Accept type is text/json, the configuration will be returned as JSON.

POST/cluster_id/clusterconf/dc/
Similar to POST /{cluster_id}/nodeconf/{node_ip}/, but sets the configuration for all nodes in one or all
datacenters. Properties that are specific to a single node, such as listen_address, rpc_address, and
broadcast_address, will be ignored.

Path
arguments: • cluster_id -- A Cluster Config ID.

• dc -- The name of a datacenter to configure. Use the special value all to set configs in
all datacenters.

Body : A YAML or JSON representation of the cassandra.yaml configuration for the nodes. If a JSON
format is used, the Accept header should be set to text/json.

DSE Node Types

GET/cluster_id/dseconf/node_ip/nodetype
Gets the DSE role for a particular node, which indicates if the node is running Hadoop services, Solr services, or
neither. Note that this method is currently only supported when DSE has been installed with debian or RPM
packages.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.
Returns a JSON string containing either "cassandra", "hadoop", or "solr".
Example

Managing Cluster Configurations

70

curl localhost:8888/Test_Cluster/dseconf/192.168.1.1/nodetype

Output:

"hadoop"

POST/cluster_id/dseconf/node_ip/nodetype
Sets the DSE role for a particular node, which controls whether the node runs Hadoop services, Solr services, or
neither. Note that this method is currently only supported when DSE has been installed with debian or RPM
packages.
Changes to the node's DSE role will only take effect after the node has been restarted, which this method does not
do.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.
Body : A JSON string containing either cassandra, hadoop, or solr.

Example

curl -X POST
 localhost:8888/Test_Cluster/dseconf/192.168.1.1/nodetype
 -d '"hadoop"'

Retrieving Cluster and Node Information
These resources give you information about your Cassandra or DSE cluster and its nodes. For example, you can get a
map of node information including the current OS load, the data held in storage, or the status of streaming or
compaction operations underway.

Cluster and Node Retrieval Methods URL

Retrieve cluster configuration information. GET /{cluster_id}/cluster

Retrieve information about a cluster property. GET /{cluster_id}/cluster/{property}

Retrieve information about nodes in the cluster. GET /{cluster_id}/nodes

Retrieve information about a specific node. GET /{cluster_id}/nodes/{node_ip}

Retrieve information about the property of a node. GET /{cluster_id}/nodes/{node_ip}/{property}

Retrieve information about a property for all nodes. GET /{cluster_id}/nodes/all/{property}

Retrieve cluster-wide storage capacity information. GET /{cluster_id}/storage-capacity

Cluster Properties

GET/cluster_id/cluster
Retrieve information about the cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a Cluster object.

Cluster

{
 "endpoint_snitch": Full class name of snitch,

Retrieving Cluster and Node Information

71

 "name": Name of the cluster,
 "partitioner": Full class name of partitioner,
 "status": Status if the cluster is being restarted
}

Example:

curl http://127.0.0.1:8888/Test_Cluster/cluster

Output:

{
 "endpoint_snitch": "org.apache.cassandra.locator.SimpleSnitch",
 "name": "Test Cluster",
 "partitioner": "org.apache.cassandra.dht.RandomPartitioner",
 "status": "Restarting"
}

GET/cluster_id/cluster/property
Retrieve a single cluster property.

Path
arguments: • cluster_id -- A Cluster Config ID.

• property -- A property of Cluster.
Returns a string.
Example:

curl http://127.0.0.1:8888/Test_Cluster/cluster/partitioner

Output:

"org.apache.cassandra.dht.RandomPartitioner"

Node Properties

GET/cluster_id/nodes
Retrieve a list of all nodes and node properties in the cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a list of Node objects.

Node
A property is null if it is not applicable to the node or if there is no data to report.

{
 "node_ip": <value>,
 "node_name": <value>,
 "token": <value>,
 "node_version": <name:value>,
 "load": <value>,
 "data_held": <value>,
 "mode": <value>,
 "streaming": <name:value, name:value, . . .>,
 "task_progress": <name:value, name:value, . . .>,
 "last_seen": <value>,
 "num_procs": <value>,

Retrieving Cluster and Node Information

72

 "rpc_ip": <value>,
 "dc": <value>,
 "rack": <value>,
 "network_interfaces": <value array>,
 "partitions": {
 "data": <value list>,
 "commitlog": <value>,
 "saved_caches": <value>,
 "other": <value list>
 },
 "devices": {
 "data": <value list>,
 "commitlog": <value>,
 "saved_caches": <value>,
 "other": <value list>
 },
 "os": <value>,
 "has_jna": <value>,
 "ec2": {
 "instance-id": <value>,
 "instance-type": <value>,
 "ami-id": <value>,
 "placement": <value>
 }
}

This table describes the property values of a Node:

Property Description of Values

node_ip IP address

node_name Hostname

token Token assignment (string). If the node has multiple tokens (part of
vnode support in Cassandra 1.2 and later), this will be a single
randomly selected token from the node's set of tokens.

node_version Dictionary of component versions:

• cassandra: Cassandra version

• dse: DSE version

• jobtracker: Job Tracker version

• tasktracker: Task Tracker version

• search: Solr version

load OS load, which corresponds to the command, 1min avg from uptime

data_held Amount of Cassandra data on the node (in bytes)

mode Examples are "normal", "decommissioned", "leaving". Controlled by
Cassandra.

streaming Dictionary of active outbound streams in the form
{<destination_node_ip>: <progress>}, where <progress>
is a float between 0.0 and 1.0. For example, 0.8 means the stream is
80% complete.

Retrieving Cluster and Node Information

73

task_progress Dictionary of active tasks in the form
{<task-name-string>: <progress>}. Example task names
include "major-compaction" and "minor-compaction". <progress> is
the same format as it is for streaming.

last_seen 0 if the node is up, a UNIX timestamp indicating when the node went
down if it is currently down, or null if the node state is unknown

num_procs Number of processor cores

rpc_ip The rpc_address set in cassandra.yaml, which is usually the same as
the node_ip property

dc Name of node's data center

rack Name of node's rack

network_interfaces Array of network interface names

partitions Dictionary of partitions on the node grouped by category:

• data: List of partitions where Cassandra data is stored

• commitlog: Partition where the commitlog resides

• saved_caches: Partition where caches are saved

• other: List of other partitions on the node that are not used by
Cassandra

devices Dictionary of devices on the node grouped by category:

• data: List of devices where Cassandra data is stored

• commitlog: Device where the commitlog resides

• saved_caches: Device where caches are saved

• other: List of other devices on the node that are not used by
Cassandra

os Name of the operating system that will contain "linux", "mac", or
"windows"

has_jna True if the node has JNA enabled, false otherwise

ec2 Dictionary of ec2 information:

• instance_id: the EC2 instance ID

• instance-type: the size and type of the node's EC2 instance

• ami-id: what AMI was used for the instance

• placement: what AWS region and availability zone the node is
located in

Example:

curl http://127.0.0.1:8888/Test_Cluster/nodes

Output:

{
 "192.168.1.28": {
 "data_held": 53067368.0,
 "dc": "Cassandra",
 "devices": {

Retrieving Cluster and Node Information

74

 "commitlog": "disk0",
 "data": [
 "disk0"
],
 "other": [],
 "saved_caches": "disk0"
 },
 "ec2": {
 "ami-id": "ami-82fa58eb",
 "instance-id": "i-1c264a66",
 "instance-type": "m1.large",
 "placement": "us-east-1d"
 },
 "has_jna": true,
 "last_seen": 0,
 "load": 0.20000000000000001,
 "mode": "normal",
 "network_interfaces": [
 "lo0",
 "en0",
 "en1"
],
 "node_ip": "192.168.1.28",
 "node_name": "cassandra08",
 "node_version": {
 "cassandra": "1.0.8",
 "dse": "2.0-1",
 "jobtracker": null,
 "search": null,
 "tasktracker": null
 },
 "num_procs": 8,
 "os": "mac os x",
 "partitions": {
 "commitlog": "/dev/disk0s2",
 "data": [
 "/dev/disk0s2"
],
 "other": [],
 "saved_caches": "/dev/disk0s2"
 },
 "rack": "rack1",
 "rpc_ip": "192.168.1.28",
 "streaming": {
 "192.168.1.27": 0.23,
 "192.168.1.29": 0.97,
 },
 "task_progress": {
 "minor-compaction": 0.447
 },
 "token": "34478773810192488084662817292306645152"
 },
 "192.168.1.29": {
 ...
 }

Retrieving Cluster and Node Information

75

 ...
}

GET/cluster_id/nodes/node_ip
Retrieve data for a specific node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address matching the node_ip for the Node.
Returns a Node object.

GET/cluster_id/nodes/node_ip/property
Retrieve a single property for a node or all nodes.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address matching the node_ip for the Node.

• property -- A property name, such as token, for a Node object.
Returns a single property from a Node object.
Example:

curl http://127.0.0.1:8888/Test_Cluster/nodes/1.2.3.4/token

Output:

"34478773810192488084662817292306645152"

GET/cluster_id/nodes/all/property
Retrieve a single property for all nodes.

Path
arguments: • cluster_id -- A Cluster Config ID.

• property -- A property name for a Node object, such as "token".
Returns a dictionary of {<node_ip>: <property value>} for all nodes in the cluster.
Example:

curl http://127.0.0.1:8888/Test_Cluster/nodes/all/token

Output:

{
 "1.2.3.3": "0",
 "1.2.3.4": "34478773810192488084662817292306645152",
 "1.2.3.5": "14981209899913204811852010238019834127"
}

Storage Capacity

GET/cluster_id/storage-capacity
Retrieve cluster-wide storage capacity information.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns:

Retrieving Cluster and Node Information

76

{
 "free_gb": Total free space in the cluster in GB,
 "used_gb": Total c* used space in the cluster in GB,
 "reporting_nodes": How many nodes are included in the first two numbers
}

Example:

curl http://127.0.0.1:8888/Test_Cluster/storage-capacity

Output:

{
 "free_gb": 627,
 "reporting_nodes": 1,
 "used_gb": 70
}

Performing Cluster Operations
Cluster operations include initiating administrative actions on nodes, such as garbage collection, in a Cassandra or DSE
cluster, rebalancing a cluster, and managing API requests sent to cluster.

Node Administration Methods

Initiate JVM garbage collection on a node. POST /{cluster_id}/ops/gc/{node_ip}

Assign a new token to the node. PUT /{cluster_id}/ops/move/{node_ip}

Drain a node. PUT /{cluster_id}/ops/drain/{node_ip}

Decommission a node. PUT /{cluster_id}/ops/decommission/{node_ip}

Run a removetoken operation. PUT /{cluster_id}/ops/removetoken/{node_ip}

Assassinate an endpoint. PUT /{cluster_id}/ops/assassinate/{node_ip}

Clean up a keyspace. POST /{cluster_id}/ops/cleanup/{node_ip}/{ks_name}

Flush memtables from a keyspace. POST /{cluster_id}/ops/flush/{node_ip}/{ks_name}

Repair a keyspace. POST /{cluster_id}/ops/repair/{node_ip}/{ks_name}

Compact a keyspace. POST /{cluster_id}/ops/compact/{node_ip}/{ks_name}

Process Management Methods

Start Cassandra/DSE on a node POST /{cluster_id}/ops/start/{node_ip}

Stop Cassandra/DSE on a node POST /{cluster_id}/ops/stop/{node_ip}

Restart Cassandra/DSE on a node POST /{cluster_id}/ops/restart/{node_ip}

Perform a rolling restart of the cluster POST /{cluster_id}/ops/restart

Cluster Rebalancing Methods

List moves to balance a cluster. GET /{cluster_id}/ops/rebalance

Run a list of moves to balance a cluster. POST /{cluster_id}/ops/rebalance

Request Management Methods

Get the status of a long-running request. GET /{cluster_id}/request/{request_id}/status

Cancel a request. POST /{cluster_id}/request/{request_id}/cancel

Performing Cluster Operations

77

Node Administration Methods

POST/cluster_id/ops/gc/node_ip
Initiate JVM garbage collection on a Node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.
Returns null.
Example:

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/gc/1.2.3.4

PUT/cluster_id/ops/move/node_ip
Assign a new token to the node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be assigned a new token.
Body : New token to assign to node.

Returns a Request ID.
Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/ops/move/10.11.12.72
 -d '"85070591730234615865843651857942052864"'

Output:

"72ff69b2-9cf5-4777-a600-9173b3fe7e6a"

PUT/cluster_id/ops/drain/node_ip
Initiate a drain operation to flush all memtables from the node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be flushed of memtables.
Returns null.
Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/ops/drain/1.2.3.4

PUT/cluster_id/ops/decommission/node_ip
Initiate decommissioning of a node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be decommissioned.
Returns null.
Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/ops/decommission/1.2.3.4

Performing Cluster Operations

78

PUT/cluster_id/ops/removetoken/node_ip
Perform a removetoken operation on the given node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to run removetoken on.
Body : A JSON dictionary with one optional key, force, which accepts a boolean value. force may only

be set to true when a removetoken operation is already in progress for the given node.

Returns a Request ID.
Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/ops/removetoken/1.2.3.4
 -d '{"force": true}'

PUT/cluster_id/ops/assassinate/node_ip
Assassinates a node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to assassinate.
Returns a Request ID.
Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/ops/assassinate/1.2.3.4

POST/cluster_id/ops/cleanup/node_ip/ks_name
Initiate a cleanup operation for the specified keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node that initiates cleaning of the keyspace.

• ks_name -- Name of the keyspace to be cleaned.
Body : List of column families to cleanup. If empty, all column families will be cleaned up.

Returns null.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/cleanup/1.2.3.4/Keyspace1
 -d '["ColFam1", "ColFam2"]'

POST/cluster_id/ops/flush/node_ip/ks_name
Flush memtables for a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be flushed of memtables for a keyspace.

• ks_name -- Keyspace of the memtables to be flushed.
Body : List of column families to flush. If empty, all column families will be flushed.

Returns null.
Example

Performing Cluster Operations

79

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/flush/1.2.3.4/Keyspace1
 -d '["ColFam1", "ColFam2"]'

POST/cluster_id/ops/repair/node_ip/ks_name
Initiates repair of a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node that initiates repair.

• ks_name -- Keyspace to be repaired.
Body : A JSON dictionary with three keys:

• is_sequential: Required for cassandra 1.1 and up. Will throw an

error if used with earlier versions. Run the repair sequentially

• is_local: Required for cassandra 1.2 and up. Will throw an error

if used with earlier versions. Use only nodes in the same data center during the repair

• cfs: List of column families to repair. If this is empty, all

column families will be repaired.
Returns null.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/repair/1.2.3.4/Keyspace1
 -d '["ColFam1", "ColFam2"]'

POST/cluster_id/ops/compact/node_ip/ks_name
Initiates a major compaction on a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node that initiates the compaction.

• ks_name -- Keyspace to be compacted.
Body : List of column families to compact. If this is empty, all column families will be compacted.

Returns null.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/compact/1.2.3.4/Keyspace1
 -d '["ColFam1", "ColFam2"]'

Process Management Methods

POST/cluster_id/ops/start/node_ip
Start the Cassandra/DSE process on a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be started.
Returns a Request ID.
Example:

Performing Cluster Operations

80

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/start/10.11.12.72

Output:

"a34814a6-4896-11e2-a563-e0b9a54a6d93"

POST/cluster_id/ops/stop/node_ip
Stop the Cassandra/DSE process on a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be stopped.
Returns a Request ID.
Example:

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/stop/10.11.12.72

Output:

"c0d81d54-4896-11e2-a563-e0b9a54a6d93"

POST/cluster_id/ops/restart/node_ip
Restart the Cassandra/DSE process on a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be restarted.
Returns a Request ID.
Example:

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/restart/10.11.12.72

Output:

"e2212500-4896-11e2-a563-e0b9a54a6d93"

POST/cluster_id/ops/restart
Perform a rolling restart of the entire cluster or a select list of nodes.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- Node to be restarted.
Body : A JSON dictionary with two optional keys:

• sleep: Amount of time in seconds to sleep between restarting each node. Defaults to 60.

• ips: A list of ips to restart. If left empty, all nodes will be restarted (this is the default
behavior).

Returns a Request ID.
Example:

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/restart/10.11.12.72

Output:

Performing Cluster Operations

81

"e2212500-4896-11e2-a563-e0b9a54a6d93"

Cluster Rebalancing Methods

GET/cluster_id/ops/rebalance
Return a list of proposed moves to run to balance a cluster. Will throw an error if called on a cluster using vnodes

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a list of moves, where each move is a token and the IP address of its assigned node. The result of this call is
passed to POST /{cluster_id}/ops/rebalance.
Example

curl http://127.0.0.1:8888/Test_Cluster/ops/rebalance

Output:

[
 [
 "85070591730234615865843651857942052864",
 "10.11.12.152"
]
]

POST/cluster_id/ops/rebalance
Run the specified list of moves to balance a cluster. Will throw an error if called on a cluster using vnodes

Path
arguments:

cluster_id -- A Cluster Config ID.

Opt. params: sleep -- An optional number of seconds to wait between each move.

Body : A list of moves to run to balance this cluster. This is typically the result of
GET /{cluster_id}/ops/rebalance.

Returns a Request ID for determining the status of, or cancelling, a running rebalance.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/ops/rebalance
 -d
 '[
 [
 "85070591730234615865843651857942052864",
 "10.11.12.152"
]
]'

Output:

"e330b179-1b9f-40c2-a2f5-d2f3d24aa85c"

Request Management Methods

Request

Performing Cluster Operations

82

Requests are the method that OpsCenter uses to track potentially long-running requests that must be completed
asynchronously. When these potentially long-running API calls are made, opscenterd will immediately return a
Request ID that can be used to look up the status of the request.
Once a Request is started, you can fetch the status information for it until opscenterd is restarted or a large number of
Requests have been started.
A Request status takes the following form:

{
 "id": ID,
 "state": STATE,
 "started": STARTED,
 "finished": FINISHED,
 "cluster_id": CLUSTER_ID,
 "details": DETAILS
}

Data:
• ID (string) -- The unique UUID for this Request. When an operation is potentially

long-running, opscented will return this ID immediately.

• STATE (string) -- Either "running", "success", or "error"

• STARTED (int) -- A unix timestamp representing when the Request started

• FINISHED (int) -- A unix timestamp representing when the Request finished, or null if it
has not finished yet

• CLUSTER_ID (string) -- The name of the cluster that the Request is operating on

• DETAILS -- Typically a string containing a status or error message, but may be a
dictionary in the form {<subrequest_id>: <Request>} when the Request holds a
collection of subrequests.

Content Types:
• JSON

GET/cluster_id/request/request_id/status
Check the status of an asynchronous request sent to OpsCenter.

Path
arguments: • cluster_id -- A Cluster Config ID.

• request_id -- The ID returned by the API call that triggered the request.
Return a dictionary describing the status of the request.
Example

curl http://127.0.0.1:8888/Test_Cluster/request/6b6b15aa-df8a-43f1-aab3-efce6b8589e4/status

{
 "status": "running",
 "started": 1334856122,
 "error_message": null,
 "finished": null,
 "moves": [
 {
 "status": null,
 "ip": "10.100.100.100",
 "old": "2",
 "new": "85070591730234615865843651857942052864"
 }
],

Performing Cluster Operations

83

 "id": "6b6b15aa-df8a-43f1-aab3-efce6b8589e4"
}

POST/cluster_id/request/request_id/cancel
Cancel an asynchronous request sent to OpsCenter. Not all requests can be cancelled.

Path
arguments: • cluster_id -- A Cluster Config ID.

• request_id -- The ID returned by the API call that triggered the request.
Returns null.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/request/6b6b15aa-df8a-43f1-aab3-efce6b8589e4/cancel

The request is canceled.

Managing Keyspaces and Column Families
You can perform keyspace and column family operations, such as adding and getting information about keyspaces and
column families, using these HTTP methods:

Keyspace Management Methods URL

Retrieve information about all keyspaces GET /{cluster_id}/keyspaces

Retrieve information about a keyspace GET /{cluster_id}/keyspaces/{ks_name}

Retrieve a single property about a keyspace GET /{cluster_id}/keyspaces/{ks_name}/{attribute}

Add a keyspace to the cluster POST /{cluster_id}/keyspaces/{ks_name}

Update an existing keyspace PUT /{cluster_id}/keyspaces/{ks_name}

Drop a keyspace in a cluster DELETE /{cluster_id}/keyspaces/{ks_name}

Column Family Management Methods

Get the description of a column family GET /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}

Add a column family to a keyspace POST /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}

Update attributes of a column family PUT /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}

Get the CQL3 CREATE query for a column family GET /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}/create_query

Set the data type for a column PUT /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}/column/{colname}

Clear the data type for a column DELETE /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}/column/{colname}

Add an index to a column family POST /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}/index/{colname}

Drop an index from a column family DELETE /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}/index/{colname}

Truncate a column family DELETE /{cluster_id}/data/{ks_name}/{cf_name}

Drop a column family itself DELETE /{cluster_id}/keyspaces/{ks_name}/cf/{cf_name}

Keyspace Management Methods

GET/cluster_id/keyspaces
Retrieve all configured keyspaces in the cluster.

Managing Keyspaces and Column Families

84

Path
arguments:

cluster_id -- A Cluster Config ID.

Opt. params:
• ksfields -- Comma delimited list of explicit keyspace properties to return.

• cffields -- Comma delimited list of explicit column family properties to return.
Returns a dictionary where the key is the keyspace name, and the value is a dictionary of its properties. The list of
properties for keyspaces and column families depends on the version of DataStax Enterprise/Cassandra that you're
running.
Example:

curl http://127.0.0.1:8888/Test_Cluster/keyspaces

Output:

{
 "Keyspace1": {
 "column_families": {
 "ColFam1": {
 "column_type": "Standard",
 "min_compaction_threshold": 4,
 ...
 },
 ...
 },
 "replica_placement_strategy": "org.apache.cassandra.locator.SimpleStrategy",
 "strategy_options": {
 "replication_factor": "1"
 },
 ...
 },
 ...
}

GET/cluster_id/keyspaces/ks_name
Retrieve information about a specific keyspace in the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The value of a 'keyspace' property in the output of
GET /{cluster_id}/keyspaces.

Opt. params:
• ksfields -- Comma delimited list of explicit keyspace properties to return.

• cffields -- Comma delimited list of explicit column family properties to return.
Returns the dictionary containing all keyspace properties. The properties returned depend on the version of DataStax
Enterprise/Cassandra.
Example

curl http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1

Output:

{
 "column_families": {
 "ColFam1": {
 "column_type": "Standard",
 "min_compaction_threshold": 4,
 ...

Managing Keyspaces and Column Families

85

 },
 ...
 },
 "replica_placement_strategy": "org.apache.cassandra.locator.SimpleStrategy",
 "strategy_options": {
 "replication_factor": "1"
 },
 ...
}

GET/cluster_id/keyspaces/ks_name/attribute
Retrieve a single property of a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The value of a keyspace property in the output of
GET /{cluster_id}/keyspaces.

• attribute -- One of the keys returned by
GET /{cluster_id}/keyspaces/{ks_name}.

Example

curl http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/replica_placement_strategy

Output:

"org.apache.cassandra.locator.SimpleStrategy"

POST/cluster_id/keyspaces/ks_name
Add a keyspace to the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace to add to the cluster.
Body : A JSON dictionary describing the attributes of the keyspace you are adding.

Responses: 201 -- Keyspace created successfully

The CQL keyspace storage parameters have keys corresponding to Cassandra keys in the keyspace dictionary and
are valid attributes for strategy_class and strategy_options parameters:

Keyspace Storage Parameter Keyspace Dictionary Key

strategy_class replica_placement_strategy

strategy_options strategy_options

durable_writes durable_writes

Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace2
 -d '{
 "strategy_class": "org.apache.cassandra.locator.SimpleStrategy",
 "strategy_options": {"replication_factor": "1"},
 "durable_writes": true
 }'

PUT/cluster_id/keyspaces/ks_name

Managing Keyspaces and Column Families

86

http://www.datastax.com/docs/1.0/references/cql/index#cql-storage-parameters

Update a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace to update.
Body : A JSON dictionary of all keyspace attributes, not just those you wish to change.

The JSON body should be similar to the one used when creating a keyspace.
Example

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1
 -d '{
 "strategy_class": "org.apache.cassandra.locator.SimpleStrategy",
 "strategy_options": {"replication_factor": "2"},
 "durable_writes": true
 }'

DELETE/cluster_id/keyspaces/ks_name
Drop a keyspace from the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace to delete.
Responses: 204 -- Keyspace deleted successfully

Example

curl -X DELETE http://127.0.0.1:8888/Test_Cluster/keyspaces/test_ks

Column Family Management Methods

GET/cluster_id/keyspaces/ks_name/cf/cf_name
Get the description of a column family.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace that contains the column family.

• cf_name -- The name of the column family.
Returns a dictionary describing the requested column family. Properties returned depend on the DataStax
Enterprise/Cassandra version.
Example

curl http://127.0.0.1:8888/Test_Cluster/keyspaces/test_ks/cf/users

Output:

{
 "column_metadata": {
 "state": {
 "validation_class": "AsciiType",
 "index_type": null,
 "index_name": null,
 "index_options": null
 }
 },
 "column_type": "Standard",

Managing Keyspaces and Column Families

87

 "min_compaction_threshold": 4,
 ...
}

POST/cluster_id/keyspaces/ks_name/cf/cf_name
Add a column family to a keyspace.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of the column family to add.
Body : A JSON dictionary describing the attributes of the column family. Keys in the dictionary are valid

column family attributes, such as column_type and comparator_type, in Cassandra.

Responses: 201 -- Column family created successfully

Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/MyColFam
 -d '{
 "column_type": "Standard",
 "comment": "",
 "comparator_type": "org.apache.cassandra.db.marshal.UTF8Type",
 "default_validation_class": "org.apache.cassandra.db.marshal.BytesType",
 "read_repair_chance": 1.0,
 "bloom_filter_fp_chance": 0.01,
 "subcomparator_type": null
 }'

PUT/cluster_id/keyspaces/ks_name/cf/cf_name
Update or modify select attributes of a column family.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.
Body : A JSON dictionary describing the attributes of the column family to update. Keys in the

dictionary are valid column family attributes, such as read_repair_chance and
bloom_filter_fp_chance, in Cassandra. Note that Cassandra does not allow some attributes,
such as the column type and the comparator type, to be altered once set.

Example

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/MyColFam
 -d '{
 "read_repair_chance": 0.1,
 "bloom_filter_fp_chance": 0.03,
 }'

GET/cluster_id/keyspaces/ks_name/cf/cf_name/create_query
Get the CQL3 CREATE query for a column family.

Managing Keyspaces and Column Families

88

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.
Returns an array of CQL3 CREATE queries. Only column families that were created with CQL3 have CREATE
queries. Any indexes that were created on the column family will also be returned.
Example

curl http://127.0.0.1:8888/Test_Cluster/keyspaces/test_ks/cf/users/create_query

Output:

[
 "CREATE TABLE test_ks.users (
 foo int PRIMARY KEY,
 bar int,
 baz int
) WITH
 bloom_filter_fp_chance=0.010000 AND
 caching='KEYS_ONLY' AND
 comment='' AND
 dclocal_read_repair_chance=0.000000 AND
 gc_grace_seconds=864000 AND
 read_repair_chance=0.100000 AND
 replicate_on_write='true' AND
 populate_io_cache_on_flush='false' AND
 compaction={'class': 'SizeTieredCompactionStrategy'} AND
 compression={'sstable_compression': 'SnappyCompressor'}",
 "CREATE INDEX users_bar_idx ON test_ks.users (bar)"
]

PUT/cluster_id/keyspaces/ks_name/cf/cf_name/column/colname
Set the validation class (data type) for a column.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.

• colname -- The name of the column to set a validation class for.
Body : A JSON string of the new validation class, such as "UT8Type".

Responses: 200 -- Column validator was set successfully.

Returns null.
Example

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/Users/column/state
 -d '"AsciiType"'

DELETE/cluster_id/keyspaces/ks_name/cf/cf_name/column/colname
Clear the validation class (data type) for a column.

Managing Keyspaces and Column Families

89

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.

• colname -- The name of the column that has the validation class to be cleared.
Responses: 200 -- Column validator was cleared successfully.

Returns null.
Example

curl -X DELETE
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/Users/column/state

POST/cluster_id/keyspaces/ks_name/cf/cf_name/index/colname
Add a secondary index to a column family.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.

• colname -- The name of the column to be indexed.
Body : A JSON dictionary describing the attributes of the index. Valid keys include validation_class,

index_type, index_name, and index_options.

Responses: 201 -- Index was added successfully

Returns null.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/Users/index/state
 -d '{
 "validation_class": "AsciiType",
 "index_type": "KEYS",
 "index_name": "state_index",
 "index_options": null
 }'

DELETE/cluster_id/keyspaces/ks_name/cf/cf_name/index/colname
Drop a secondary index from a column family.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of an existing keyspace.

• cf_name -- The name of an existing column family.

• colname -- The name of the indexed column.
Responses: 204 -- Index was dropped successfully

Returns null.
Example

curl -X DELETE
 http://127.0.0.1:8888/Test_Cluster/keyspaces/Keyspace1/cf/Users/index/state

DELETE/cluster_id/data/ks_name/cf_name

Managing Keyspaces and Column Families

90

Truncate a column family. Deletes all data from the column family but does not delete the column family itself.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace containing the column family.

• cf_name -- The name of the column family to truncate.
Responses: 204 -- Column family truncated successfully

Returns null.
Example

curl -X DELETE http://127.0.0.1:8888/Test_Cluster/data/test_ks/users

DELETE/cluster_id/keyspaces/ks_name/cf/cf_name
Drop a column family.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The name of the keyspace containing the column family.

• cf_name -- The name of the column family to delete.
Responses: 204 -- Column family dropped successfully

Example

curl -X DELETE http://127.0.0.1:8888/Test_Cluster/keyspaces/test_ks/cf/users

Retrieving Metric Data
Using the metric retrieval methods you can retrieve performance metrics at the cluster, node, and column family levels.

Metric Retrieval Methods URL

Retrieve cluster-wide metrics. GET /{cluster_id}/cluster-metrics/{dc}/{metric}

Retrieve cluster-wide metrics about a device. GET /{cluster_id}/cluster-metrics/{dc}/{metric}/{device}

Retrieve cluster-wide metrics about a column family. GET /{cluster_id}/cluster-metrics/{dc}/{ks_name}/{cf_name}/{metric}

Retrieve metrics about a node. GET /{cluster_id}/metrics/{node_ip}/{metric}

Retrieve node-specific metrics about a device. GET /{cluster_id}/metrics/{node_ip}/{metric}/{device}

Retrieve node-specific metrics about a column family. GET /{cluster_id}/metrics/{node_ip}/{ks_name}/{cf_name}/{metric}

You can choose from a large number of metric keys to pass with these methods, making retrieval of a wide spectrum of
performance information possible.

Filtering the Metric Data Output
You can also use the following query parameters with these methods to filter the output:

Query Parameter Description

start (optional) A timestamp in seconds indicating the beginning of the time range to fetch. When
omitted, this defaults to one day before the end parameter.

end (optional) A timestamp in seconds indicating the end of the time range to fetch. When
omitted, this defaults to the current time.

Retrieving Metric Data

91

step (optional) The resolution of the data points for the metric. Valid input options are: 1, 5, 120,
or 1440 minutes; corresponding output intervals are 60, 200, 7200, or 86400 seconds. The
default is a 1 minute step.

function (optional) The type of aggregation to perform on the metric: min, max, or average. By
default, results are returned for all three types of aggregation.

Results of calls to retrieve metrics are returned in the following format:

{
 [<node_ip>: | <device>: | <keyspace.columnfamily>:]
 {
 <function>:
 [
 [<timestamp> <value>],
 ...
]
 }
}

By default, the output is metric data points at 60-second intervals over a 24-hour period. Data points are listed in
chronological order, starting with the oldest data point first.

GET/cluster_id/cluster-metrics/dc/metric
Aggregate a metric across multiple nodes in the cluster rather than retrieving data about a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• dc -- The name of the data center for the nodes. Use the name all to aggregate a
metric across all data centers.

• metric -- One of the Cluster Metrics Keys.
Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Returns metric data across multiple nodes in a cluster.
Example
Get the average write requests per second over to the cluster over all data centers on May 1, 2012 from 8 AM to 5 PM
GMT. Show data points at 2-hour (120-minute) intervals.

curl -G
 http://127.0.0.1:8888/Test_Cluster/cluster-metrics/all/write-ops
 -d 'step=120'
 -d 'start=1335859200'
 -d 'end=1335891600'
 -d 'function=average'

Output:
Data points at 2-hour (7200 seconds) intervals show the number of write requests per second during business hours
on May 1.

{
 "Total": {
 "AVERAGE": [
 [
 1335859200,
 null
],
 [
 1335866400,
 13.376885890960693

Retrieving Metric Data

92

],
 [
 1335873600,
 13.372154712677002
],
 [
 1335880800,
 13.365732669830322
],
 [
 1335888000,
 13.392115592956543
]
]
 }
}

GET/cluster_id/cluster-metrics/dc/metric/device
Aggregate a disk or network metric, which pertains to a specific device, across multiple nodes in the cluster rather
than retrieving data about a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• dc -- The name of the data center for the nodes. Use the name all to aggregate a
metric across all data centers.

• metric -- One of the Cluster Metrics Keys or Operating System Metrics Keys.

• device -- The device to be measured, which the Node object lists. Use the name all to
measure all devices, For example, when requesting a disk metric, all will aggregate
metrics from all disk devices.

Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Examples of Device Arguments
To determine the set of network interfaces that metrics are available for, you can run a query similar to the following:

curl http://localhost:8888/Test_Cluster/nodes/192.168.1.1/network_interfaces

["lo0", "eth0", "eth1"]

In this case, lo0, eth0, and eth1 can all be used.
Disk devices can be discovered in a similar way.

curl http://localhost:8888/Test_Cluster/nodes/192.168.1.1/devices

{
 "commitlog": "sdb",
 "data": ["sda"],
 "saved_caches": "sda",
 "other": ["sdc"]
}

In this case, any of sda, sdb, or sdc may be used.
Finally, metrics are also captured for disk partitions and filesystems:

curl http://localhost:8888/Test_Cluster/nodes/192.168.1.1/partitions

Retrieving Metric Data

93

{
 "commitlog": "/dev/sdb1",
 "data": ["/dev/sda1"],
 "saved_caches": "/dev/sda1",
 "other": ["/dev/sdc1"]
}

Here, the available partitions are /dev/sda1, /dev/sdb1, and /dev/sdc1. Keep in mind that you will need to
URL-encode the items, so /dev/sda1 will become %2Fdev%2Fsda1.
Using a partition, network interface, or other device name for the device argument returns disk or network metric data
about a specific device across multiple nodes. Using all for the device name returns a dictionary of keys (device
names) and the values (results for that device).
Example
Get the average GB of space on all disks in all data centers used each day by the cluster from April 11, 2012 00:00:00
to April 26, 2012 00:00:00 GMT.

curl -G
 http://127.0.0.1:8888/Test_Cluster/cluster-metrics/all/os-disk-used/all
 -d 'step=1440'
 -d 'start=1334102400'
 -d 'end=1335398400'
 -d 'function=average'

Output:

{
 "Total": {
 "AVERAGE": [
 [
 1334102400,
 null
],
 [
 1334188800,
 21.000694274902344
],
 [
 1334275200,
 8.736943244934082
],
 [
 1334361600,
 9.0
],
 [
 1334448000,
 19.0
],
 [
 1334534400,
 19.0
],
 [
 1334620800,
 19.0
],
 [

Retrieving Metric Data

94

 1334707200,
 19.0
],
 [
 1334793600,
 18.629029273986816
],
 [
 1334880000,
 19.923184394836426
],
 [
 1334966400,
 25.0
],
 [
 1335052800,
 25.0
],
 [
 1335139200,
 25.923053741455078
],
 [
 1335225600,
 26.0
],
 [
 1335312000,
 26.549484252929688
]
]
 }
}

GET/cluster_id/cluster-metrics/dc/ks_name/cf_name/metric
Aggregate a column family metric across multiple nodes in the cluster rather than retrieving data about a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• dc -- The name of the data center for the nodes. Use the name all to aggregate a
metric across all data centers.

• ks_name -- The keyspace that contains the column family to be measured.

• cf_name -- The column family to be measured.

• metric -- One of the Column Family Metrics Keys.
Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Returns metric data for multiple nodes.
Example
Get the maximum bytes of disk space used for live data by the Users column family in the Keyspace1 keyspace of the
cluster over all data centers from May 1, 2012 00:00:00 to May 5, 2012 00:00:00 GMT:

curl -G
 http://127.0.0.1:8888/Test_Cluster/cluster-metrics/all/Keyspace1/Users/cf-live-disk-used
 -d 'function=max'

Retrieving Metric Data

95

 -d 'start=1335830400'
 -d 'end=1336176000'
 -d 'step=1440'

Output:
Data points at 24-hour intervals show the metrics for the period.

{

 "Total": {
 "MAX": [
 [
 1335830400,
 9740462592.0
],
 [
 1335916800,
 9932527616.0
],
 [
 1336003200,
 null
],
 [
 1336089600,
 10644448512.0
]
]
 }
}

GET/cluster_id/metrics/node_ip/metric
Retrieve metric data for a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.

• metric -- One of the Cluster Metrics Keys.
Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Returns metric data for a single node.
Example
Get the daily average data load on cluster node 10.11.12.150 from April 20, 2012 00:00:00 to April 26, 2012 00:00:00
GMT:

curl -G
http://127.0.0.1:8888/Test_Cluster/metrics/10.11.12.150/data-load
 -d 'step=1440'
 -d 'start=1334880000'
 -d 'end=1335398400'
 -d 'function=average'

Output:

{
 "10.11.12.150": {
 "AVERAGE": [

Retrieving Metric Data

96

 [
 1334880000,
 null
],
 [
 1334966400,
 6353770496.0
],
 [
 1335052800,
 6560092672.0
],
 [
 1335139200,
 6019291136.0
],
 [
 1335225600,
 6149050880.0
],
 [
 1335312000,
 6271239680.0
]
]
 }
}

GET/cluster_id/metrics/node_ip/metric/device
Aggregate a disk or network metric for a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.

• metric -- One of the Cluster Metrics Keys or Operating System Metrics Keys.

• device -- The device to be measured. Use the name all to measure all devices
associated with a disk metric. See
GET /{cluster_id}/cluster-metrics/{dc}/{metric}/{device} for examples
of devices.

Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Returns disk or network metrics data for a single node.
Example
Get the maximum GB of disk space for all disks used by cluster node 10.11.12.150 from April 30, 2012 at 22:05 to
May 1, 2012 8:00:00 GMT:

curl -G
http://127.0.0.1:8888/Test_Cluster/metrics/10.11.12.150/os-disk-used/all
 -d 'start=1335823500'
 -d 'end=1335859200'
 -d 'step=120'
 -d 'function=max'

Output:
Data points at 2-minute intervals show the disk space used by device /dev/sda1.

Retrieving Metric Data

97

{
 "/dev/sda1": {
 "MAX": [
 [
 1335823200,
 null
],
 [
 1335830400,
 17.0
],
 [
 1335837600,
 16.0
],
 [
 1335844800,
 17.0
],
 [
 1335852000,
 16.0
]
]
 }
}

GET/cluster_id/metrics/node_ip/ks_name/cf_name/metric
Retrieve metric data about a column family on a single node.

Path
arguments: • cluster_id -- A Cluster Config ID.

• node_ip -- IP address of the target Node.

• ks_name -- The keyspace that contains the column family to be measured.

• cf_name -- The column family to be measured.

• metric -- One of the Column Family Metrics Keys.
Query params: parameters -- The parameters listed in Filtering the Metric Data Output.

Example
Get the daily, maximum response time (in microseconds) to write requests on the Users column family in the
Keyspace1 keyspace by cluster node 10.11.12.150 from May 1, 2012 at 00:00:00 to May 5, 2012 00:00:00 GMT.

curl -G
http://127.0.0.1:8888/Test_Cluster/metrics/10.11.12.150/Keyspace1/Users/cf-write-latency-op
 -d 'function=max'
 -d 'start=1335830400'
 -d 'end=1336176000'
 -d 'step=1440'

Output:

{
 "OpsCenter.rollups60": {
 "MAX": [
 [
 1335830400,

Retrieving Metric Data

98

 102.28681945800781
],
 [
 1335916800,
 124.86614227294922
],
 [
 1336003200,
 null
],
 [
 1336089600,
 127.14733123779297
]
]
 }
}

Metrics Attribute Key Lists
This section contains these tables of metric keys to use with resources that retrieve OpsCenter performance data:

• Cluster Metrics Keys

• Column Family Metrics Keys

• Operating System Metrics Keys

Cluster Metrics Keys

This list of keys corresponds to Cassandra metrics collected by OpsCenter:

Key Units Description

data-load bytes Size of the data on the node.

pending-compaction-tasks -- Number of compaction operations queued and waiting to run.

pending-flush-sorter-tasks -- Number of pending tasks related to the first step in flushing
memtables to disk as SSTables.

pending-flushes -- Number of memtables queued for the flush process.

pending-gossip-tasks -- Number of gossip messages and acknowledgments queued and
waiting to be sent or received.

pending-hinted-handoff -- Number of hints in the queue waiting to be delivered after a
failed node comes up.

pending-internal-responses -- Number of pending tasks from internal tasks, such as nodes
joining and leaving the cluster.

pending-memtable-post-flushers -- Number of pending tasks related to the last step in flushing
memtables to disk as SSTables.

pending-migrations -- Number of pending tasks from system methods that modified the
schema.

pending-misc-tasks -- Number of pending tasks from infrequently run operations, not
measured by another metric.

pending-read-ops -- Number of read requests received by the cluster and waiting to
be handled.

Retrieving Metric Data

99

pending-read-repair-tasks -- Number of read repair operations in the queue waiting to run.

pending-repair-tasks -- Manual repair tasks pending, operations to be completed during
anti-entropy repair of a node.

pending-repl-on-write-tasks -- Pending tasks related replication of data after an insert or
update to a row.

pending-request-responses -- Progress of streamed rows from the receiving node.

pending-streams -- Progress of streamed rows from the sending node.

pending-write-ops -- Number of write requests received by the cluster and waiting to
be handled.

read-latency-op microseconds Average response time to a client read request.

read-ops -- The number of read requests per second.

write-latency-op microseconds The average response time to a client write request.

write-ops -- The write requests per second.

key-cache-hits -- The number of key cache hits per second. (This metric is
per-column family before Cassandra 1.1)

key-cache-requests -- The number of key cache requests per second. (This metric is
per-column family before Cassandra 1.1)

key-cache-hit-rate % The percentage of key cache lookups that resulted in a hit. (This
metric is per-column family before Cassandra 1.1)

row-cache-hits -- The number of row cache hits per second. (This metric is
per-column family before Cassandra 1.1)

row-cache-requests -- The number of row cache requests per second. (This metric is
per-column family before Cassandra 1.1)

row-cache-hit-rate % The percentage of row cache lookups that resulted in a hit. (This
metric is per-column family before Cassandra 1.1)

total-compactions-completed -- Number of compaction tasks completed.

total-bytes-compacted bytes Number of bytes compacted per second.

cms-collection-count -- Number of concurrent mark sweep garbage collections
performed per second.

cms-collection-time ms/sec Average number of milliseconds spent performing CMS garbage
collections per second.

par-new-collection-count -- Number of ParNew garbage collections performed per second.

par-new-collection-time ms/sec Average number of milliseconds spent performing ParNew
garbage collections per second.

heap-committed bytes Allocated memory guaranteed for the Java heap.

heap-max bytes Maximum amount that the Java heap can grow.

heap-used bytes Average amount of Java heap memory used.

nonheap-committed bytes Allocated memory, guaranteed for Java nonheap.

nonheap-max bytes Maximum amount that the Java nonheap can grow.

nonheap-used bytes Average amount of Java nonheap memory used.

Retrieving Metric Data

100

Column Family Metrics Keys

This list of keys corresponds to column family-specific metrics collected by OpsCenter:

Key Units Description

cf-keycache-hit-rate % Cache requests that resulted in a key cache hit. (This metric is global in
Cassandra 1.1+.)

cf-keycache-hits -- Number of read requests that resulted in the requested row key being
found in the key cache. (This metric is global in Cassandra 1.1+.)

cf-keycache-requests -- Total number of read requests on the key cache. (This metric is global in
Cassandra 1.1+.)

cf-live-disk-used bytes Disk space used by a column family for readable data.

cf-live-sstables -- Current number of SSTables for a column family.

cf-pending-tasks -- Number of pending reads and writes on a column family.

cf-read-latency-op microseconds Internal response time to a successful request to read data from a
column family.

cf-read-ops -- Read requests per second on a column family.

cf-rowcache-hit-rate -- Percentage of cache requests that resulted in a row cache hit. (This
metric is global in Cassandra 1.1+.)

cf-rowcache-hits -- Number of read requests on the row cache. (This metric is global in
Cassandra 1.1+.)

cf-rowcache-requests -- Total number of read requests on the row cache. (This metric is global in
Cassandra 1.1+.)

cf-total-disk-used -- Disk space used by a column family for live or old data (not live).

cf-write-latency-op microseconds Internal response time to a successful request to write data to a column
family.

cf-write-ops -- Write requests per second on a column family.

cf-bf-space-used bytes How large the bloom filter is.

cf-bf-false-positives -- Number of bloom filter false positives per second.

cf-bf-false-ratio % Percentage of bloom filter lookups that resulted in a false positive.

solr-avg-time-per-req milliseconds Average time a search query takes in a DSE cluster using DSE search.

solr-errors -- Errors per second that occur for a specific Solr core/index.

solr-requests -- Requests per second made to a specific Solr core/index.

solr-timeouts -- Timeouts per second on a specific Solr core/index.

Operating System Metrics Keys

This list of keys corresponds to operating system (OS) metrics collected by OpsCenter:

Key OS Units Description

os-cpu-idle all* % Time the CPU is idle.

os-cpu-iowait Linux % Time the CPU devotes to waiting for I/O to complete.

os-cpu-nice Linux % Time the CPU devotes to processing nice tasks.

os-cpu-privileged Windows % Time the CPU devotes to processing privileged instructions.

Retrieving Metric Data

101

os-cpu-steal Linux % Time the CPU devotes to tasks stolen by virtual operating
systems.

os-cpu-system Linux, OSX % Time the CPU devotes to system processes.

os-cpu-user all* % Time the CPU devotes to user processes.

os-disk-await Linux,
Windows

MS Average completion time of each request to the disk.

os-disk-free all* GB Free space on a specific disk partition.

os-disk-queue-size Linux,
Windows

-- Average number of requests queued due to disk latency
issues.

os-disk-read-rate Linux,
Windows

-- Rate of reads per second to the disk.

os-disk-read-throughput Linux,
Windows

mb/secAverage disk throughput for read operations.

os-disk-request-size Linux sectorsAverage size of read requests issued to the disk.

os-disk-request-size-kb Windows KB Average size of read requests issued to the disk.

os-disk-throughput OSX mb/secAverage disk throughput for read and write operations.

os-disk-usage all* % Disk space used by Cassandra at a given time.

os-disk-used all* GB Disk space used by Cassandra at a given time.

os-disk-utilization Linux,
Windows

% CPU time consumed by disk I/O.

os-disk-write-rate Linux,
Windows

-- Rate of writes per second to the disk.

os-disk-write-throughput Linux,
Windows

mb/secAverage disk throughput for write operations.

os-load all* -- Operating system load average

os-memory-avail Windows MB Available physical memory.

os-memory-buffers Linux MB Total system memory currently buffered.

os-memory-cached Linux MB Total system memory currently cached.

os-memory-committed Windows MB Memory in use by the operating system.

os-memory-free Linux, OSX MB Total system memory currently free.

os-memory-pool-nonpaged Windows MB Allocated pool-nonpaged memory.

os-memory-pool-paged Windows MB Allocated pool-paged-resident memory.

os-memory-sys-cache-resident Windows MB Memory used by the file cache.

os-memory-used Linux, OSX MB Total system memory currently used.

os-net-received all* kb/sec Speed of data received from the network.

os-net-sent all* kb/sec Speed of data sent across the network.

• all means Linux, OSX, and Windows operating systems.

Retrieving Metric Data

102

Managing Events and Alerts
Using these methods, you can get information about log events, such as node compactions and repairs triggered
through OpsCenter, and configure alert thresholds for a number of Cassandra metrics.

Event and Alert Methods URL

Retrieve OpsCenter events. GET /{cluster_id}/events

Alert Methods

Retrieve configured alert rules. GET /{cluster_id}/alert-rules

Retrieve a specific alert rule. GET /{cluster_id}/alert-rules/{alert_id}

Create a new alert rule. POST /{cluster_id}/alert-rules/

Update an alert rule. PUT /{cluster_id}/alert-rules/{alert_id}

Delete an alert rule. DELETE /{cluster_id}/alert-rules/{alert_id}

Retrieve active alerts. GET /{cluster_id}/alerts/fired

Event Methods

GET/cluster_id/events
Retrieve historical events logged by OpsCenter.

Path
arguments:

cluster_id -- A Cluster Config ID.

Query params:
• count -- The number of events to return. Defaults to 10.

• timestamp -- A timestamp specifying the point in time to start retrieving events. Specified
as a unix timestamp in microseconds. Defaults to the current time.

• reverse -- A boolean (0 or 1) indicating whether to retrieve events in reverse order.
Defaults to 1 (true). Events are retrieved starting from the time specified by the timestamp
and going backward in time until 'count' events are found or there are no more events to
retrieve.

Returns a list of dictionaries where each dictionary represents an event. An event dictionary contains properties
describing that event.
Example

curl http://127.0.0.1:8888/Test_Cluster/events?count=1

Output:

{
 "action": 28,
 "api_source_ip": 192.168.1.12,
 "event_source": "OpsCenter",
 "level": 1,
 "level_str": "INFO",
 "message": "Restarting node 192.168.100.3",
 "source_node": 192.168.100.3,
 "success": null,
 "target_node": null,
 "time": "1334768517145625",
 "user": joe
}

Managing Events and Alerts

103

Alert Methods

GET/cluster_id/alert-rules
Retrieve a list of configured alert rules in OpsCenter.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a list of AlertRule objects.

AlertRule

{
 "id": <value>,
 "type": <value>,
 "threshold": <value>,
 "comparator": <value>,
 "duration": <value>,
 "notify_interval": <value>,
 "enabled": <value>,
 "metric": <value>,
 "cf": <value>,
 "item": <value>,
 "dc": <value>
}

This table describes the property values of an AlertRule object:

Property Type Description of Values

id String A unique ID that references an alert rule. Use only for retrieving alert rules.

type String The event or metric aggregation that triggers an alert. Accepted values include
rolling-avg, cluster-balance, and node-down. This field is not editable.

threshold Float The metric boundary that triggers an alert when the threshold is crossed.
Applicable only when the type is rolling-avg.

comparator String Optional. Values are < or >.

duration Int How long (in minutes) the problem continues before firing the alert.

notify_interval Int How often (in minutes) to repeat the alert. Use 0 for a single notification.

enabled Int The state of the alert. Values are 0 (disabled) or 1 (enabled).

metric String A key from list of metrics. This field is only valid if the type is rolling-avg.

cf String Optional. The column family to monitor if the metric property is one of the Column
Family Metrics Keys.

item String Optional. The device to monitor if the metric is one of the Operating System
Metrics Keys.

dc String Optional. The name of the data center that contains nodes to be monitored. If
omitted, all nodes will be monitored.

Example

curl http://127.0.0.1:8888/Test_Cluster/alert-rules

Output:

[
 {

Managing Events and Alerts

104

 "comparator": ">",
 "dc": "us-east",
 "duration": 1.0,
 "enabled": 1,
 "id": "e0c356c7-62ff-4aa8-9b17-e305f101b69a",
 "metric": "write-latency",
 "notify_interval": 1.0,
 "threshold": 10000.0,
 "type": "rolling-avg"
 },
 ...
]

GET/cluster_id/alert-rules/alert_id
Retrieve a specific alert rule.

Path
arguments: • cluster_id -- A Cluster Config ID.

• alert_id -- A UUID that identifies a specific alert rule and has the value of an id property
returned by GET /{cluster_id}/alert-rules.

Returns an AlertRule.
Example

curl http://127.0.0.1:8888/Test_Cluster/alert-rules/e0c356c7-62ff-4aa8-9b17-e305f101b69a

Output:

{
 "comparator": ">",
 "dc": "us-east",
 "duration": 1.0,
 "enabled": 1,
 "id": "e0c356c7-62ff-4aa8-9b17-e305f101b69a",
 "metric": "write-latency",
 "notify_interval": 1.0,
 "threshold": 10000.0,
 "type": "rolling-avg"
}

POST/cluster_id/alert-rules
Create a new alert rule.

Path
arguments:

cluster_id -- A Cluster Config ID.

Body : A dictionary in the format of AlertRule describing the alert to create.

Responses: 201 -- Alert rule was created successfully

Returns the ID of the newly created alert.
Example:

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/alert-rules
 -d '{
 "comparator": ">",
 "dc": "",
 "duration": 60.0,

Managing Events and Alerts

105

 "enabled": 1,
 "metric": "heap-used",
 "notify_interval": 5.0,
 "threshold": 6291456000.0,
 "type": "rolling-avg"
 }'

Output:

"b375fd3e-3908-4be5-ae37-d8f3b8699a9f"

PUT/cluster_id/alert-rules/alert_id
Update an existing alert rule.

Path
arguments: • cluster_id -- A Cluster Config ID.

• alert_id -- A UUID that identifies a specific alert rule and has the value of an id property
returned by GET /{cluster_id}/alert-rules.

Body : A dictionary of fields from AlertRule to update.

Responses: 200 -- Alert rule updated successfully

Example:

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/alert-rules/b375fd3e-3908-4be5-ae37-d8f3b8699a9f
 -d '{"duration": 120.0}'

DELETE/cluster_id/alert-rules/alert_id
Delete an existing alert rule.

Path
arguments: • cluster_id -- A Cluster Config ID.

• alert_id -- A UUID that identifies a specific alert rule and has the value of an id property
returned by GET /{cluster_id}/alert-rules.

Responses: 200 -- Alert rule removed successfully

Example:

curl -X DELETE
 http://127.0.0.1:8888/Test_Cluster/alert-rules/b375fd3e-3908-4be5-ae37-d8f3b8699a9f

GET/cluster_id/alerts/fired
Get all alerts which are currently fired.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a list of alerts that have been triggered. Each item in the list is a dictionary describing the triggered alert.
Example:

curl http://127.0.0.1:8888/Test_Cluster/alerts/fired

Output:

[
 {
 "alert_rule_id": "ca4cf071-03bd-486a-a8be-428e6cd7218a",
 "current_value": 31676303.333333332,

Managing Events and Alerts

106

 "first_fired": 1336669233,
 "node": "10.11.12.150"
 },
 {
 "alert_rule_id": "ca4cf071-03bd-486a-a8be-428e6cd7218a",
 "current_value": 28380117.5,
 "first_fired": 1336669233,
 "node": "10.11.12.152"
 }
]

Snapshot Management and Restoring from Snapshots
With these methods, you can schedule periodic snapshots, run snapshots immediately, view the snapshots that
currently exist in the cluster, and restore from a snapshot.

Managing Snapshot Job Schedules

List jobs scheduled to run in OpsCenter. GET /{cluster_id}/job-schedules

Get the description of a scheduled job. GET /{cluster_id}/job-schedules/{schedule_id}

Schedule a job. POST /{cluster_id}/job-schedules

Modify a scheduled job. PUT /{cluster_id}/job-schedules/{schedule_id}

Delete a scheduled job. DELETE /{cluster_id}/job-schedules/{schedule_id}

Managing Snapshots

List snapshots in the cluster. GET /{cluster_id}/backups

List snapshots for a keyspace in the cluster. GET /{cluster_id}/backups/{ks_name}

Run a snapshot immediately. POST /{cluster_id}/backups/run

Restoring from Snapshots

Restore all data from a snapshot. POST /{cluster_id}/backups/restore/{tag}

Restore a specific keyspace from a snapshot. POST /{cluster_id}/backups/restore/{tag}/{ksname}

Restore a specific column family from a snapshot. POST /{cluster_id}/backups/restore/{tag}/{ksname}/{cfname}

Managing Snapshot Job Schedules

Job Schedule
A job schedule describes an action that OpsCenter will run periodically. Currently, the only type of scheduled job
available is a snapshot job.
A job schedule has the following form:

{
 "first_run_date": FIRST_RUN_DATE,
 "first_run_time": FIRST_RUN_TIME,
 "timezone": TIMEZONE,
 "interval": INTERVAL,
 "interval_unit": INTERVAL_UNIT
 "job_params": JOB_PARAMS,
 "id": ID,
 "next_run": NEXT_RUN,

Snapshot Management and Restoring from Snapshots

107

 "last_run": LAST_RUN
}

Data:
• FIRST_RUN_DATE (string) -- A date in YYYY-MM-DD format the date for running the job.

• FIRST_RUN_TIME (string) -- A time in hh:mm:ss format specifying the time to begin
running the job.

• TIMEZONE (string) -- The time zone, listed in the OpsCenter /meta/timezones directory,
for the job schedule. For example, GMT, US/Central, US/Pacific, and US/Eastern are
valid timezones.

• INTERVAL (int) -- In conjunction with interval_unit, this controls how often the job is
executed. For example, an interval of 2 and an interval_unit of weeks results in a job that
will run every two weeks.

• INTERVAL_UNIT (string) -- The unit of time for interval. Values are minutes, hours, days,
or weeks.

• JOB_PARAMS (dict) -- A dictionary that describes the job. Only the type field is required
to be present in the dictionary, and its value is currently limited to backup. Fields for this
dictionary are specific to the type; for the backup type, see Backup Job Params.

• ID (string) -- A unique ID that references a job schedule. Use only for retrieving a job
schedule.

• NEXT_RUN (string) -- The date and time of the next scheduled run.

• LAST_RUN (string) -- The date and time of the last successful run.

Backup Job Params
A JSON dictionary that describes a backup type of Job Schedule. This should be used as the job_params field in the
Job Schedule.

{
 "type": "backup",
 "keyspaces": KEYSPACES,
 "cleanup_age": CLEANUP_AGE,
 "cleanup_age_unit": CLEANUP_AGE_UNIT,
 "pre_snapshot_script": PRE_SNAPSHOT_SCRIPT,
 "post_snapshot_script": POST_SNAPSHOT_SCRIPT
}

Snapshot Management and Restoring from Snapshots

108

Data:
• KEYSPACES (list) -- A JSON list of keyspace names that should be included in

scheduled snapshots. An empty list or null will result in all keyspaces being included in the
snapshots.

• CLEANUP_AGE (int) -- (Optional) In combination with CLEANUP_AGE_UNIT, this
specifies the age at which old snapshots should be deleted. A value of 0 will disable
automatic snapshot cleanup. This option defaults to a value of 0, meaning automatic
snapshot cleanups are disabled by default.

• CLEANUP_AGE_UNIT (string) -- (Optional) The unit of time for CLEANUP_AGE. Valid
values include "minutes", "hours", "days" (the default), and "weeks".

• PRE_SNAPSHOT_SCRIPT (string) -- (Optional) The file name of a custom script to be
automatically run prior to triggering each snapshot. This file must exist within the
bin/backup-scripts/ directory where the OpsCenter agent is installed. Only letters,
numbers, underscores and hyphens are permitted in the name.

• POST_SNAPSHOT_SCRIPT (string) -- (Optional) The file name of a custom script to be
automatically run after each snapshot is taken. The name of each file included in the
snapshot will be passed to the script through stdin. This file must exist within the
bin/backup-scripts/ directory where the OpsCenter agent is installed. Only letters,
numbers, underscores and hyphens are permitted in the name.

GET/cluster_id/job-schedules
Retrieve a list of jobs scheduled to run in OpsCenter. Currently the only type of job is a scheduled snapshot.

Path
arguments:

cluster_id -- A Cluster Config ID.

Returns a list of Job Schedule objects.
Example:

curl http://127.0.0.1:8888/Test_Cluster/job-schedules

Output:

[
 {
 "first_run_date": "2012-04-19",
 "first_run_time": "18:00:00",
 "id": "19119720-115a-4f2c-862f-e10e1fb90eed",
 "interval": 1,
 "interval_unit": "days",
 "job_params": {
 "cleanup_age": 30,
 "cleanup_age_unit": "days",
 "keyspaces": [],
 "type": "backup"
 },
 "last_run": "2012-04-20 18:00:00 GMT",
 "next_run": "2012-04-21 18:00:00 GMT",
 "timezone": "GMT"
 },
 ...
]

GET/cluster_id/job-schedules/schedule_id
Get the description of a scheduled job.

Snapshot Management and Restoring from Snapshots

109

Path
arguments: • cluster_id -- A Cluster Config ID.

• schedule_id -- A unique ID of the scheduled job that matches the id of a Job Schedule
object.

Returns a Job Schedule object.

POST/cluster_id/job-schedules
Create a new scheduled job. You can create a scheduled job to run one time in the future by specifying an interval of
-1 and interval_unit of null.

Path
arguments:

cluster_id -- A Cluster Config ID.

Body : A dictionary in the format of a Job Schedule describing the scheduled job to create. The id,
last_run, and next_run fields should be omitted.

Responses: 201 -- Job schedule created successfully

Returns the ID of the newly created job.
Example

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/job-schedules/
 -d
 '{
 "first_run_date": "2012-05-03",
 "first_run_time": "18:00:00",
 "interval": 1,
 "interval_unit": "days",
 "job_params": {
 "cleanup_age": 30,
 "cleanup_age_unit": "days",
 "keyspaces": [],
 "type": "backup"
 },
 "timezone": "GMT"
 }'

Output:

"905391b7-1920-486d-a633-282f22dce604"

PUT/cluster_id/job-schedules/schedule_id
Update a scheduled job.

Path
arguments: • cluster_id -- A Cluster Config ID.

• schedule_id -- A unique ID identifying the schedule job to update.
Body : A dictionary with fields from Job Schedule that you would like to update.

Responses: 200 -- Schedule updated successfully

Returns null.
Example

curl -X PUT
 http://127.0.0.1:8888/Test_Cluster/job-schedules/905391b7-1920-486d-a633-282f22dce604
 -d
 '{
 "interval": "12",

Snapshot Management and Restoring from Snapshots

110

 "interval_unit": "hours"
 }'

DELETE/cluster_id/job-schedules/schedule_id
Delete a scheduled job.

Path
arguments: • cluster_id -- A Cluster Config ID.

• schedule_id -- A unique ID identifying the schedule job to delete.
Responses: 200 -- Schedule deleted successfully

Returns null.
Example

curl -X DELETE
 http://127.0.0.1:8888/Test_Cluster/job-schedules/905391b7-1920-486d-a633-282f22dce604

Managing Snapshots

GET/cluster_id/backups
Get a list of snapshots that exist in the cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

Opt. params: match -- A Job Schedule ID to limit snapshots to those created by a particular snapshot
schedule.

Returns a dictionary describing snapshots in the cluster. Each key in the dictionary is the ID of the snapshot and each
value is a dictionary describing the snapshot.
Example

curl http://127.0.0.1:8888/Test_Cluster/backups

Output:

{
 "opscenter_adhoc_2012-04-19-17-41-12-UTC": {
 "id": "adhoc",
 "keyspaces": {
 "OpsCenter": {
 "cfs": [
 "events",
 "events_timeline",
 "rollups60",
 ...
],
 "nodes": [
 "127.0.0.1"
],
 "size": 23180
 },
 "system": {
 "cfs": [
 "LocationInfo",
 "Schema",
 ...
],

Snapshot Management and Restoring from Snapshots

111

 "nodes": [
 "127.0.0.1"
],
 "size": 48961
 },
 "test": {
 "cfs": [
 "cf1",
 "cf2"
],
 "nodes": [
 "127.0.0.1"
],
 "size": 4543
 }
 },
 "time": 1334857272
 }
}

GET/cluster_id/backups/ks_name
Get a list of snapshots that exist for a keyspace in the cluster.

Path
arguments: • cluster_id -- A Cluster Config ID.

• ks_name -- The keyspace scheduled for snapshot.
Returns data in the same format as GET /{cluster_id}/backups.

POST/cluster_id/backups/run
Run a one time backup immediately.

Path
arguments:

cluster_id -- A Cluster Config ID.

Body : A JSON dictionary containing the options to use for running this one-time snapshot.

Returns true to indicate a successful snapshot.
Example
Start a snapshot of two keyspaces immediately.

curl -X POST
 http://127.0.0.1:8888/Test_Cluster/backups/run
 -d '{"keyspaces": ["Keyspace1", "Keyspace2"]}'

Output:
The first true response indicates that the snapshot was successful for the specified node.

[
 true,
 [
 null,
 "10.11.12.150"
]
],
[
 true,
 [
 null,

Snapshot Management and Restoring from Snapshots

112

 "10.11.12.152"
]
]

Note: You can schedule a one-time snapshot in the future using the POST /{cluster_id}/job-schedules.
Specify an interval=-1 and interval_unit=null.

Restoring from Snapshots

POST/cluster_id/backups/restore/tag
Restore all data from a snapshot.

Path
arguments: • cluster_id -- A Cluster Config ID.

• tag -- The ID of a snapshot to restore. This must match one of the IDs returned by
GET /{cluster_id}/backups.

Body : A JSON dictionary of options, including:

• throttle: The streaming limit in MB/second. The default behavior is no throttle.

• excluded-nodes: The list of nodes to exclude from the restore process.

• force: True or false. True ignores problems, such as some nodes or agents being down,
that normally abort restoration.

• keyspaces: A dictionary mapping keyspace names to a dictionary of options specific to
that keyspace. If this parameter is omitted, all keyspaces will be restored. If it is present,
only the keyspaces listed in the dictionary will be restored. The set of accepted options
per-keyspace include the following:

• column-families: A list of specific column families to restore. If omitted, all
column families will be restored. If omitted, all column families will be restored.

• truncate: True or false. True first truncates all column families that will be
restored. By default, column families are not truncated before restoration.

Returns a Request ID.
Example

SNAPSHOT='opscenter_4a269167-96c1-40c7-84b7-b070c6bcd0cd_2012-06-07-18-00-00-UTC'
curl -X POST
 http://192.168.1.1:8888/Test_Cluster/backups/restore/$SNAPSHOT
 -d '{
 "throttle": 10,
 "excluded-nodes": [
 "192.168.100.7"
],
 "keyspaces": {
 "Keyspace1": {
 "column-families: ["users", "dates"],
 "truncate": true
 },
 "OpsCenter": {
 "truncate": false
 }
 },
 }'

Output:

Snapshot Management and Restoring from Snapshots

113

"fee2232c-48ac-11e2-b1b9-e0b9a54a6d93"

POST/cluster_id/backups/restore/tag/ksname
Restore a keyspace from a snapshot.

Path
arguments: • cluster_id -- A Cluster Config ID.

• tag -- The ID of a snapshot to restore. This must match one of the ID's returned by
GET /{cluster_id}/backups.

• ksname -- A keyspace to restore.
Body : A JSON dictionary of options, including:

• throttle: The streaming limit in MB/second. The default behavior is no throttle.

• excluded-nodes: The list of nodes to exclude from the restore process.

• force: True or false. True ignores problems, such as some nodes or agents being down,
that normally abort restoration.

• column-families: A list of specific column families to restore. If omitted, all column
families will be restored.

• truncate: True or false. True first truncates all column families that will be restored. By
default, column families are not truncated before restoration.

Returns a Request ID.
Example

SNAPSHOT='opscenter_4a269167-96c1-40c7-84b7-b070c6bcd0cd_2012-06-07-18-00-00-UTC'
curl -X POST
 http://192.168.1.1:8888/Test_Cluster/backups/restore/$SNAPSHOT/Keyspace1
 -d '{
 "throttle": 10,
 "excluded-nodes": [
 "192.168.100.7"
],
 "column-families: ["users", "dates"],
 "truncate": true
 }'

Output:

"fee2232c-48ac-11e2-b1b9-e0b9a54a6d93"

POST/cluster_id/backups/restore/tag/ksname/cfname
Restore a column family from a snapshot.

Path
arguments: • cluster_id -- A Cluster Config ID.

• tag -- The ID of a snapshot to restore. This must match one of the ID's returned by
GET /{cluster_id}/backups.

• ksname -- A keyspace to restore.

• cfname -- A column family to restore.

Snapshot Management and Restoring from Snapshots

114

Body : A JSON dictionary of options, including:

• throttle: The streaming limit in MB/second. The default behavior is no throttle.

• excluded-nodes: The list of nodes to exclude from the restore process.

• force: True or false. True ignores problems, such as some nodes or agents being down,
that normally abort restoration.

• truncate: True or false. True first truncates all column families that will be restored. By
default, column families are not truncated before restoration.

Returns a Request ID.
Example

SNAPSHOT='opscenter_4a269167-96c1-40c7-84b7-b070c6bcd0cd_2012-06-07-18-00-00-UTC'
curl -X POST
 http://192.168.1.1:8888/Test_Cluster/backups/restore/$SNAPSHOT/Keyspace1/users
 -d '{
 "throttle": 10,
 "excluded-nodes": [
 "192.168.100.7"
],
 "truncate": true
 }'

Output:

"fee2232c-48ac-11e2-b1b9-e0b9a54a6d93"

Hadoop Status

Hadoop Status Methods URL

Get the current status of the Hadoop cluster. GET /{cluster_id}/hadoop/status

Get a list of submitted jobs and their status. GET /{cluster_id}/hadoop/jobs

GET/cluster_id/hadoop/status
Retrieve information about the status of the Hadoop cluster. Returns a JSON dictionary of cluster attributes and their
current value.
Example:

curl http://127.0.0.1:8888/Test_Cluster/hadoop/status

Output:

{
 "activeTrackerNames": [
 "tracker_dse1:dse1/127.0.0.1:47333"
],
 "blacklisted_tracker_names": [],
 "has_recovered": false,
 "has_restarted": false,
 "hostname": "dse1",
 "http_port": 50030,
 "identifier": "201301301843",
 "mapTasks": 0,
 "max_map_tasks": 2,
 "max_memory": 4125097984,

Hadoop Status

115

 "max_reduce_tasks": 2,
 "num_active_trackers": 1,
 "num_blacklisted_trackers": 0,
 "num_excluded_nodes": 0,
 "reduce_tasks": 0,
 "start_time": 1359592991647,
 "state": 1,
 "task_tracker_expiry_interval": 600000,
 "total_submissions": 5,
 "used_memory": 4125097984
}

Job Details

GET/cluster_id/hadoop/jobs
Returns a JSON list of submitted jobs, each of which is a dictionary of job attributes.
Example:

curl http://127.0.0.1:8888/Test_Cluster/hadoop/jobs

Output:

[
 {
 "desired_maps": 1,
 "desired_reduces": 1,
 "duration": 18951,
 "finish_time": 0,
 "finished_maps": 1,
 "finished_reduces": 0,
 "job_id": {
 "as_string": "job_201301301843_0001",
 "job_id": 1,
 "job_tracker_id": "201301301843"
 },
 "launch_time": 1359593329324,
 "priority": 2,
 "profile": {
 "job_file": "cfs:/tmp/hadoop-joe/mapred/staging/joe/.staging/job_201301301843_0001/job.xml",
 "name": "INSERT OVERWRITE TABLE 10da...b.column_name)(Stage-1)",
 "queue_name": "default",
 "user": "joe"
 },
 "start_time": 1359593329128,
 "status": {
 "cleanup_progress": 0.0,
 "map_progress": 1.0,
 "reduce_progress": 0.0,
 "run_state": 1,
 "scheduling_info": "NA",
 "setup_progress": 1.0
 }
 }
]

Provisioning New Nodes and Clusters
Using these methods, you can create new clusters or add nodes to an existing cluster in an automated fashion. The
nodes may be created on existing machines and VMs, or OpsCenter can launch EC2 instances to host the nodes.

Provisioning New Nodes and Clusters

116

Provisioning Methods URL

Provision a new cluster POST /provision

Add nodes to an existing cluster POST /{cluster_id}/provision

Launch EC2 instances and provision a new cluster POST /launch

Launch EC2 instances to add nodes to a cluster POST /{cluster_id}/launch

Provisioning on Prepared Servers

POST/provision
Set up and start a new Cassandra or DSE cluster on existing machines.
The post body should be a JSON dictionary containing, at a minimum, the following required entries:

• nodes: A list of IP addresses to set up as part of the cluster

• cassandra_config: A Cassandra Config, which is a JSON dictionary representing the cassandra.yaml
configuration for the nodes in the cluster.

• install_params: A dictionary specifying what packages to install and the user credentials needed to access the
machines using SSH. The following entries are accepted:

• package: Either "dsc" or "dse"

• version: The version of DSC or DSE to install

• username: The username to use when SSHing to the machines

• password: The password for username. This may be omitted if a private key is specified and the user has
root privileges or can perform the necessary actions using sudo without specifying a password.

• private_key: The text contents of the private key for username. This may be omitted if a password is
specified.

• private_key_file: The path to a private key file. This may be used in place of the private_key option.

• repo-user: If installing DSE, this is the username that you use to access the DataStax enterprise
repositories.

• repo-password: If installing DSE, this is the password that you use to access the DataStax enterprise
repositories.

The following entries are typically optional, but are sometimes required:

• opscenter_config: A JSON dictionary representing the OpsCenter Cluster Config for the new cluster. If this
option is omitted, the [cassandra]: seed_hosts option will be automatically populated and all other
options will be left at their default values.

• node_type_map: The role for each node that you specify when provisioning a DSE cluster. The entry should be
a map from IP addresses to one of the following: "cassandra", "hadoop", or "solr". If omitted, "cassandra" is
assumed.

• topology_map: Specifications of the DCs and racks for the provisioned nodes, which you can pass as a map in
the form {ip: [dc, rack]}. This argument is required when using a snitch other than SimpleSnitch,
RackInferringSnitch, DseSimpleSnitch, or DseDelegateSnitch. The topology info is used for token selection
purposes, but will not result in cassandra-topology.properties being filled out automatically.

• token_map: A map of the form {ip: token} that overrides the default OpsCenter selection of balanced
tokens for each node on a per-DC basis. OpsCenter does not currently pick balanced tokens automatically
when multiple racks are in use. This should only be supplied when provisioning a cluster that is not using
vnodes.

• ssh_ip_map: A map of private interfaces to public interfaces used to deal with nodes that have different public
and private interfaces (such as Amazon EC2).

Provisioning New Nodes and Clusters

117

• accepted_fingerprints: A parameter that SSH automatically checks for each host. If the fingerprint for a host has
not been seen before, the operation will fail with a status code of 409 unless that fingerprint is included in the
accepted_fingerprints parameter. The format should be a map like {ip: <fingerprint>}, where
<fingerprint> should be the the result of:

ssh-keygen -lf /dev/stdin <<< "_ $(ssh-keyscan $HOST 2>/dev/null | cut -f2,3 -d ' ')"

Alternatively, when a 409 status is returned, the result body will be a JSON dictionary with a fingerprints entry. The
value of that entry is a map of {ip: <fingerprint>} that can be directly used as the value for the
accepted_fingerprints parameter.

Returns a Request ID.
Example
When launching a three node DSC cluster, Our post body might look like:

{
 "cassandra_config": {
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 "cluster_name": "Test Cluster",
 "column_index_size_in_kb": 64,
 "commitlog_directory": "/var/lib/cassandra/commitlog",
 "commitlog_sync": "periodic",
 "commitlog_sync_period_in_ms": 10000,
 "compaction_preheat_key_cache": true,
 "compaction_throughput_mb_per_sec": 16,
 "concurrent_reads": 32,
 "concurrent_writes": 32,
 "data_file_directories": [
 "/var/lib/cassandra/data"
],
 "dynamic_snitch_badness_threshold": 0.1,
 "dynamic_snitch_reset_interval_in_ms": 600000,
 "dynamic_snitch_update_interval_in_ms": 100,
 "encryption_options": {
 "internode_encryption": "none",
 "keystore": "conf/.keystore",
 "keystore_password": "cassandra",
 "truststore": "conf/.truststore",
 "truststore_password": "cassandra"
 },
 "endpoint_snitch": "SimpleSnitch",
 "flush_largest_memtables_at": 0.75,
 "hinted_handoff_enabled": true,
 "hinted_handoff_throttle_delay_in_ms": 1,
 "in_memory_compaction_limit_in_mb": 64,
 "incremental_backups": false,
 "index_interval": 128,
 "initial_token": null,
 "key_cache_save_period": 14400,
 "key_cache_size_in_mb": null,
 "max_hint_window_in_ms": 3600000,
 "memtable_flush_queue_size": 4,
 "multithreaded_compaction": false,
 "partitioner": "org.apache.cassandra.dht.RandomPartitioner",
 "reduce_cache_capacity_to": 0.6,
 "reduce_cache_sizes_at": 0.85,

Provisioning New Nodes and Clusters

118

 "request_scheduler": "org.apache.cassandra.scheduler.NoScheduler",
 "row_cache_provider": "SerializingCacheProvider",
 "row_cache_save_period": 0,
 "row_cache_size_in_mb": 0,
 "rpc_keepalive": true,
 "rpc_port": 9160,
 "rpc_server_type": "sync",
 "rpc_timeout_in_ms": 10000,
 "saved_caches_directory": "/var/lib/cassandra/saved_caches",
 "snapshot_before_compaction": false,
 "ssl_storage_port": 7001,
 "storage_port": 7000,
 "thrift_framed_transport_size_in_mb": 15,
 "thrift_max_message_length_in_mb": 16,
 "trickle_fsync": false,
 "trickle_fsync_interval_in_kb": 10240
 },
 "install_params": {
 "username": "joe",
 "password": "somepassword",
 "package": "dsc",
 "version": "1.1.2"
 },
 "nodes": [
 "192.168.100.1",
 "192.168.100.2",
 "192.168.100.3"
]
}

Which we can use as follows:

curl -X POST
 localhost:8888/provision
 -d @provision.json

Output:

"da0794da-4a3a-11e2-b745-e0b9a54a6d93"

DSE Example
When launching a DSE cluster with two Cassandra nodes, one Hadoop node, and one Solr node, our post body might
look like:

{
 "cassandra_config": {
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 ...
 "trickle_fsync_interval_in_kb": 10240
 },
 "install_params": {
 "username": "joe",
 "password": "somepassword",
 "package": "dse",
 "version": "2.2.1",

Provisioning New Nodes and Clusters

119

 "repo-user": "some-dse-username",
 "repo-password": "some-dse-password"
 },
 "nodes": [
 "192.168.100.1",
 "192.168.100.2",
 "192.168.100.3",
 "192.168.100.4"
],
 "node_type_map": {
 "192.168.100.1": "cassandra",
 "192.168.100.2": "cassandra",
 "192.168.100.3": "hadoop",
 "192.168.100.4": "solr"
 }
}

POST/cluster_id/provision
Add new Cassandra or DSE nodes to a cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

The post body should be the same as for POST /provision, but with the following differences:

• opscenter_config is not accepted.

• token_map is required when provisioning a non vnode cluster.
Returns a Request ID.
Example
When adding two nodes to a DSC cluster, the post body may look like:

{
 "cassandra_config": {
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 ...
 "trickle_fsync_interval_in_kb": 10240
 },
 "install_params": {
 "username": "joe",
 "password": "somepassword",
 "package": "dsc",
 "version": "1.1.2"
 },
 "nodes": [
 "192.168.100.4",
 "192.168.100.5"
],
 "token_map": {
 "192.168.100.4": "10",
 "192.168.100.5": "46248042897083394072353090607538141429"
 }
}

Provisioning with New EC2 Instances

Provisioning New Nodes and Clusters

120

POST/launch
Launch a set of new EC2 instances and provision a new cluster on them.
The post body should be a JSON dictionary with two entries: launch and provision.
"launch" dictionary
The launch entry should be a dictionary containing the following required entries:

• ec2_access_id: The AWS Access ID for the account you wish to launch the instances with.

• ec2_secret_key: The matching AWS Secret Key for the provided Access ID.

• location: The AWS region to use for launching the instances. The following options are available:

• "US East (Northern Virginia)"

• "US West (Northern California)"

• "US West (Oregon)"

• "EU (Ireland)"

• "Asia Pacific (Tokyo)"

• "Asia Pacific (Singapore)"

• "South America (Sao Paulo)"

The default location is "US East (Northern Virginia)".
The following optional entries may also be used inside the launch dictionary:

• zone: The availability zone to launch the instances in. For example, options for the US East region include
"us-east-1a", "us-east-1b", "us-east-1c", "us-east-1d", and "us-east-1e". If omitted, an availability zone will be
randomly chosen.

• image_id: The AMI ID to use for the new instances. A good default choice for this is the DataStax AMI for the
region. To see all options organized by region, look at
<opscenterd_conf_dir>/definitions/ec2-instances-*.json>. By default, the DataStax AMI for US
East will be used.

• image_size: The type and size of instances to launch. Options include “m1.small”, “m1.large”, “c1.medium”, and
so on. Some sizes are only available in select AWS regions. By default, m1.large will be used.

• keypair: The name of an AWS keypair to use when launching the new EC2 instances. If omitted, a new key pair
will be created with the name OpsCenterProvisioningKeyPair.

• security_group: The name of an AWS keypair to use when launching the new EC2 instances. If omitted, a new
security group named OpsCenterSecurityGroup will be created and used. This security group opens the default
ports used by Cassandra, DSE, OpsCenter, and SSH.

"provision" dictionary

• cassandra_config: A Cassandra Config, which is a JSON dictionary representing the cassandra.yaml
configuration for the nodes in the cluster.

Provisioning New Nodes and Clusters

121

• install_params: A dictionary specifying what packages to install and the user credentials needed to access the
machines using SSH. The following entries are accepted:

• package: Either "dsc" or "dse"

• version: The version of DSC or DSE to install

• username: The username to use when SSHing to the machines

• private_key: The text contents of the private key for username. This may be omitted if a password is
specified or if the keypair option was omitted, which results in a new key pair being created.

• private_key_file: The path to a private key file. This may be used in place of the private_key option.

• repo-user: If installing DSE, this is the username that you use to access the DataStax enterprise
repositories.

• repo-password: If installing DSE, this is the password that you use to access the DataStax enterprise
repositories.

The following entries are typically optional, but are sometimes required:

• opscenter_config: A JSON dictionary representing the OpsCenter Cluster Config for the new cluster. If this
option is omitted, the [cassandra]: seed_hosts option will be automatically populated and all other
options will be left at their default values.

• node_type_counts: When provisioning a DSE cluster, this allows you to specify how many nodes of each role
type should be provisioned. It should be a map of the form {node_type: count}, where node_type is one of
"cassandra", "hadoop", or "solr". For example, if {"cassandra": 4, "hadoop": 2} were used, the cluster
would contain six nodes, with four running just DSE and two running hadoop services as well. When launching
DSC clusters, only the cassandra type should be used.

• type_token_map: Normally, OpsCenter will select balanced tokens for each node on a per-DC basis. You can
optionally override those selctions by passing in a map of the form {node_type: [token, token, ...]}
where node_type is one of "cassandra", "hadoop", or "solr". This param should only be used when provisioning
non vnode clusters.

Returns a Request ID.
Example
To launch a three node cluster in US East, availability zone 'a', our post body might look like this:

{
 "provision": {
 "cassandra_config": {
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 ...
 "trickle_fsync_interval_in_kb": 10240
 },
 "install_params": {
 "package": "dsc",
 "version": "1.1.2",
 "username": "ubuntu"
 },
 "node_type_counts": {
 "cassandra": 3
 }
 },

 "launch" {
 "ec2_access_id": "9BATIQ711LYY326X6191",
 "ec2_secret_key": "I2nr9Jk1welj1IJekIejkbnQ91JmajIJaRea2ajR",
 "location": "US East (Northern Virginia)",

Provisioning New Nodes and Clusters

122

 "zone": "us-east-1a",
 "image_id": "ami-6139e708",
 "image_size": "m2.xlarge",
 "keypair": "MyKeyPair",
 "security_group": "default"
 }
}

POST/cluster_id/launch
Launch a set of new EC2 instances in order to add new nodes to an Cassandra or DSE cluster.

Path
arguments:

cluster_id -- A Cluster Config ID.

The post body should be the same as the one used for POST /launch with the following differences in the provision
dictionary:

• opscenter_config should be omitted.

• node_type_counts is required only when provisioning a vnode cluster

• type_token_map is required when provisioning a non vnode cluster (and replaces node_type_counts).
Returns a Request ID.
Example
To launch two EC2 instances and add two Hadoop nodes and one Solr node to an existing DSE cluster, body might
look like this:

{
 "provision": {
 "cassandra_config": {
 "authenticator": "org.apache.cassandra.auth.AllowAllAuthenticator",
 "authority": "org.apache.cassandra.auth.AllowAllAuthority",
 "auto_snapshot": true,
 ...
 "trickle_fsync_interval_in_kb": 10240
 },
 "install_params": {
 "package": "dse",
 "version": "2.2.1",
 "username": "ubuntu",
 "repo-user": "some-dse-username",
 "repo-password": "some-dse-password"
 },
 "type_token_map": {
 "hadoop": ["10", "86248042897083394072353090607538141429"],
 "solr": ["46248042897083394072353090607538141429"]
 }
 },

 "launch" {
 "ec2_access_id": "9BATIQ711LYY326X6191",
 "ec2_secret_key": "I2nr9Jk1welj1IJekIejkbnQ91JmajIJaRea2ajR",
 "location": "US East (Northern Virginia)",
 "zone": "us-east-1a",
 "image_id": "ami-6139e708",
 "image_size": "m2.xlarge",
 "keypair": "MyKeyPair",
 "security_group": "default"

Provisioning New Nodes and Clusters

123

 }
}

Provisioning New Nodes and Clusters

124

Troubleshooting
This section lists some common problems experienced with OpsCenter and solutions or workarounds.

Internet Explorer browser is not supported
If you try to load the OpsCenter client in Microsoft Internet Explorer, a dialog displays informing you that it is not
supported.

OpsCenter is only supported on the latest versions of:

• Mozilla Firefox

• Google Chrome

• Apple Safari

Provisioning

General Troubleshooting Steps

• Ensure firewalls are properly opened between the opscenterd machine and each node.

• Check the following files (on any of the nodes having problems) for any errors:

• /var/log/cassandra/system.log

• /var/log/opscenter-agent/agent.log

• Verify that Cassandra (or DSE) was not previously installed on any of the machines; if it was, all binaries,
configuration files, logs, etc. must be cleared out first.

Invalid Repository Credentials

Debian

When installing DSE, if you enter invalid values for DataStax Credentials, an error dialog displays text along the lines of:

Installation stage failed: Installation failed on node 172.16.1.2: 'apt-get update' failed.

Clicking Details displays the entire output from both stdout and stderr. If, in this output, you see the "401
Unauthorized", it means that the credentials entered were invalid.

RHEL

When installing DSE, if you enter invalid values for DataStax Credentials, an error dialog displays text along the lines of:

Installation failed on node 172.16.1.2: 'yum install' failed.

Clicking Details displays the entire output from both stdout and stderr. If, in this output, you see "The requested
URL returned error: 401", it means that the credentials used were invalid.

Timed out waiting for Cassandra to start
If you receive this error, it most likely means that the Cassandra process failed to start on one or more nodes. You
should look in /var/log/cassandra/system.log for any errors that may need to be resolved.

Troubleshooting

125

The following packages are already installed
If you receive an error that starts with this message, it means Cassandra (or DSE) is already installed on the system.
OpsCenter provisioning requires that any instances of Cassandra (or DSE) be completely removed or purged before
provisioning a new cluster.

Agents cannot connect to opscenterd
If you receive an error message that includes "The installed agent doesn't seem to be responding", there is most likely a
firewall issue preventing the installed agent from connecting to the opscenterd machine. You should ensure that port
61620 is open on the opscenterd machine and check the agent logs.

Cannot create a keyspace
Due to a Python 2.6 or earlier bug, some users experience a problem adding a keyspace using Data Modeling
OpsCenter features. OpsCenter cannot save a newly created keyspace.

Upgrading Python generally fixes this problem.

Error exceptions.ImportError:libssl.so.0.9.8 displayed
Your CentOS 5.x, Debian, OEL 5.5, RHEL 5.x, or Ubuntu operating system has OpenSSL 1.0.0 installed and you see
an error containing this message.

exceptions.ImportError: libssl.so.0.9.8

To correct this situation, install OpenSSL 0.9.8.

• To install OpenSSL 0.9.8 on OEL and RHEL, run sudo yum install openssl098.

• To install OpenSSL 0.9.8 on CentOS, Debian, or Ubuntu, run sudo apt-get install libssl0.9.8.

Python used to run OpsCenter not built with SSL
In order to protect your AWS credentials when launching EC2 instances, OpsCenter needs to use HTTPS, but if the
version of Python that is running opscenterd was not compiled with SSL support OpsCenter will not run even if SSL has
been disabled in the configuration file.

To resolve the issue, first ensure that OpenSSL 0.9.8 is installed on your system. If you have compiled Python manually,
it is recommended that you install Python 2.6+ through your package manager. On CentOS and RedHat Enterprise
Linux, this is most easily done through EPEL packages.

If you must compile Python manually, make sure that SSL support is enabled. This blog post explains the process for
Python 2.5, but the same steps will work for Python 2.6 or 2.7.

OpsCenter agent port setting conflict
If you have a problem with OpsCenter, check for conflicts in port settings. The OpsCenter Agent uses port 7199 by
default. If you have not changed the default port, check that Cassandra or another process on the node, is not set up to
use this port.

If you set the OpsCenter Agent port to a host name instead of an IP address, the DNS provider must be online to
resolve the host name. If the DNS provider is not online, intermittent problems should be expected.

Cannot create a keyspace

126

http://www.datastax.com/docs/opscenter/install/install_rhel
http://agiletesting.blogspot.com/2008/05/compiling-python-25-with-ssl-support.html

Limiting the metrics collected by OpsCenter
If you have many column families, the number of metrics OpsCenter collects can become quite large. For information
about how to reduce the number keyspaces or column families that are monitored, see Controlling data collection.

Java not installed or JAVA_HOME environment variable not set
If Java is not installed or if OpsCenter cannot find JAVA_HOME, you may see an error such as:

/usr/share/opscenter-agent/bin/opscenter-agent: line 98: exec: -X: invalid option
exec: usage: exec [-cl] [-a name] [command [arguments ...]] [redirection ...]

To correct this problem, install Java or set JAVA_HOME:

export JAVA_HOME=<path_to_java>

Insufficient user resource limits errors
Insufficient resource limits may result in an insufficient nofiles error:

2012-08-13 11:22:51-0400 [] INFO: Could not accept new connection (EMFILE)

See Recommended settings under Insufficient user resource limits errors in the Cassandra documentation.

Limiting the metrics collected by OpsCenter

127

http://www.datastax.com/docs/1.2/install/install_jre
http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/install/installRecommendSettings.html

Release notes
For information about new features and resolved issues in the following releases, see:

• OpsCenter 3.1.1

• OpsCenter 3.1

• OpsCenter 3.0.2

• OpsCenter 3.0

• OpsCenter 2.1.3

• OpsCenter 2.1.2

• OpsCenter 2.1

• OpsCenter 2.0

Before upgrading, check the compatibility of the OpsCenter version you want to run against your version of Cassandra
or DataStax Enterprise.

OpsCenter 3.1.1

Resolved issues

• Fixed an issue with opscenterd not starting up when certain types of CQL3 column families exist.

OpsCenter 3.1

Features

• Column families created via CQL3 are recognized and monitored.

• Added support for provisioning nodes with vnodes enabled.

Resolved issues

• Fixed OpsCenter not running without the proper SSL library being installed, even if SSL feature has been
disabled, has been fixed.

• Fixed an issue with editing keyspace properties if another keyspace was recently updated.

• Fixed loading Performance presets with special characters in the name.

• Fixed agent hitting out of memory exception when cleaning up some backups.

• Fixed the List View rendering when nodes have long hostnames.

• Fixed an issue with adding nodes to an existing DSE cluster when some nodes were down.

• Fixed an issue when provisioning nodes using RackInferringSnitch and hostnames.

OpsCenter 3.0.2
OpsCenter Enterprise Edition 3.0.2 changes include the following bug fixes:

Release notes

128

Resolved issues

• When adding internal Cassandra authentication to a cluster, the cluster's edited configuration can now be saved.
Previoiusly an error was reported: Unable to connect to cluster.

• Scrolling long lists of column families in the Schema and Data Explorer panes has been implemented.

• Agents now receive configuration changes without having to be restarted.

• Compaction status now displays properly in List View or node popup.

• OpsCenter no longer becomes unresponsive (caused by an agent hanging) if there are too many files in the
snapshots directory.

OpsCenter 3.0
OpsCenter Enterprise Edition 3.0 supports Cassandra 1.2 when virtual nodes are disabled.

What's new

• Visual cluster creation and management

• Managing settings

• Restarting a cluster

• Database restore

• Customizable backups

• Software update notifications

• Improved object creation and management

• Automated collection of diagnostic data

• Offloading of metadata repository to secondary clusters

• DSE security and encryption

Resolved issues

• Fixed node popup in Ring/Physical view going blank.

• Fixed agent data collection being interrupted on error.

• Fixed display of some data in Performance section.

• Fixed list of nodes in List View jumping around when compactions are running.

• Fixed several minor issues in the UI.

• Fixed several issues with installing opscenterd and the agents.

OpsCenter 2.1.3
OpsCenter Enterprise Edition 2.1.3 supports Cassandra 1.2 when virtual nodes are disabled. This Edition also includes
bug fixes.

OpsCenter 3.0

129

What's new
OpsCenter Enterprise Edition 2.1.3 can monitor and administer Cassandra 1.2 as described in the documentation
unless you enable virtual nodes. When you enable virtual nodes, OpsCenter chooses a single token for each node for
operations such as collecting metrics. Attempting to move nodes, rebalance nodes, and perform other tasks involving
token ranges is not supported.

Resolved issues

• Fixed issue processing keyspaces that only exist in 1 datacenter.

• Fixed data collection issues during compactions on secondary indexes.

OpsCenter 2.1.2
OpsCenter Enterprise Edition 2.1.2 changes include a new feature and bug fixes.

What's new
OpsCenter Enterprise Edition 2.1.2 can now work in multiple regions or IP forwarding deployments.

Resolved issues

• Better parsing of some device types when collecting metrics.

• Fixed ability to configure user access on tarball installations.

• Fixed Cluster Report feature on tarball installations.

OpsCenter 2.1
OpsCenter Enterprise Edition 2.1 key enhancements include data modeling and data browsing, report generation, and
additional metrics for performance monitoring.

What's new

• Browsing data in the Cassandra database.

• Generation of a PDF report about the cluster.

• Capability to handle thousands of column families efficiently.

• Online feedback form.

• Optional HTTPS support.

• Installation of agents to RHEL and Debian clusters regardless of the location of the configuration file
(opscenterd.conf).

• Truncation of column families. Truncation removes the data but not the column family itself.

OpsCenter 2.0
OpsCenter Enterprise Edition 2.0 is a major release that introduces backup and cluster enhancements.

OpsCenter 2.1.2

130

What's new

• Multi-cluster management. You can manage multiple cluster from the same OpsCenter instance.

• New Overview page for monitoring multiple clusters. It shows a condensed view of each cluster's Dashboard. It is
visible only when multiple clusters exist.

• Perform and schedule operations from OpsCenter.

• Point OpsCenter at existing Cassandra clusters, where you can add, modify, or delete clusters from OpsCenter.

• Adds support and metrics for DataStax Enterprise 2.0 Search nodes.

• No longer compatible with Cassandra 0.7.

Resolved issues

• Fixed opscenter-agent package not starting on machine restart.

• Allow node move operation when a keyspace is set to replicate to a non-existent data center.

• Fixed agent listen address when SSL is disabled.

• Fixed data explorer error when searching for row key containing "#".

OpsCenter 2.1.2

131

Sending us feedback
Thanks for using OpsCenter Enterprise Edition. Please take a moment to let us know what you think. Start OpsCenter
and click Feedback at the top of the console. The feedback form appears.

Enter your name, email address, and feedback. Click Send Feedback. We appreciate your comments.

Sending us feedback

132

	About OpsCenter
	Key features

	Installing OpsCenter
	Installing OpsCenter from CentOS, OEL, and RHEL packages
	Prerequisites
	Installing the OpsCenter package
	Next steps

	Installing OpsCenter from Debian or Ubuntu packages
	Prerequisites
	Installing the OpsCenter package
	Next steps

	Installing OpsCenter tarball distributions on Linux and Mac OSX
	Prerequisites
	Installing the OpsCenter binary
	Next steps

	Installing OpsCenter agents
	Automatically deploying agents - Packaged installations
	Prerequisites
	Installing agents from OpsCenter
	Next steps

	Manually deploying agents - Tarball installations
	Prerequisites
	Installing agents
	Next steps

	Manually deploying agents - Packaged installations
	Prerequisites
	Installing agents
	Next steps

	Adding custom variables to agents

	Configuring OpsCenter
	Configuring user access
	About access roles
	Admin role privileges
	User role privileges

	Assigning or modifying access roles
	Removing a user

	Configuring SSL
	SSL requirements
	Disabling SSL in Binary Tarball Installations (Linux and Mac OSX)
	Enabling SSL in Windows installations

	Configuring HTTPS
	Configuring OpsCenter for multiple regions
	Configuring events and alerts
	Enabling email alerts
	Enabling alerts posted to a URL

	Configuring data collection and expiration
	Estimating the amount of data generated
	Controlling data collection
	Excluding keyspaces and column families
	Changing performance data expiration times

	Advanced configuration
	OpsCenter configuration properties
	[agents] ssh_port
	[webserver] port
	[webserver] interface
	[logging] level
	[stat_reporter] interval
	[authentication] passwd_file

	Cluster configuration properties
	Cassandra connection properties
	[jmx] port
	[cassandra] seed_hosts
	[cassandra] api_port
	[cassandra] install_location
	[cassandra] conf_location

	Metrics Collection Properties
	[cassandra_metrics] ignored_keyspaces
	[cassandra_metrics] ignored_column_families

	Performance Data Expiration Properties
	1min_ttl = 604800
	5min_ttl = 2419200
	2hr_ttl = 31536000

	Starting and stopping OpsCenter and its agents
	Starting OpsCenter
	Restarting OpsCenter
	Stopping OpsCenter
	Starting the OpsCenter agent
	Restarting the OpsCenter Agent

	Using OpsCenter
	Introduction to OpsCenter
	Node administration
	Node management operations

	Cluster administration
	Prerequisites for administering a cluster
	Creating a cluster
	Adding a cluster
	Generating a report
	Collecting diagnostic data
	Adding a node to a cluster
	Configuring a cluster
	Removing a cluster from OpsCenter
	Rebalancing a cluster
	Restarting a node
	Modifying a cluster setting

	OpsCenter performance metrics
	Using performance metrics
	Cluster performance metrics
	Write Requests
	Write Request Latency
	Read Requests
	Read Request Latency
	Cassandra JVM Memory Usage
	JVM CMS Collection Count
	JVM CMS Collection Time
	JVM ParNew Collection Count
	JVM ParNew Collection Time
	Data Size
	Total Bytes Compacted
	Total Compactions

	Pending task metrics
	Pending Task Metrics for Writes
	Flushes Pending
	Flush Sorter Tasks Pending
	Memtable Post Flushers Pending
	Write Requests Pending
	Replicate on Write Tasks Pending

	Pending Task Metrics for Reads
	Read Requests Pending
	Read Repair Tasks Pending
	Compactions Pending

	Pending Task Metrics for Cluster Operations
	Manual Repair Tasks Pending
	Gossip Tasks Pending
	Hinted Handoff Pending
	Internal Responses Pending
	Migrations Pending
	Misc. Tasks Pending
	Request Responses Pending
	Streams Pending

	Column family performance metrics
	CF: Local Writes
	CF: Local Write Latency
	CF: Local Reads
	CF: Local Read Latency
	CF: KeyCache Requests
	CF: KeyCache Hits
	CF: KeyCache Hit Rate
	CF: RowCache Requests
	CF: RowCache Hits
	CF: Row Cache Hit Rate
	CF: SSTable Size
	CF: SSTable Count
	CF: Pending Reads/Writes
	CF: Bloom Filter Space Used
	CF: Bloom Filter False Positives
	CF: Bloom Filter False Positive Ratio

	System performance metrics
	Memory
	CPU
	Load
	Disk Usage (GB)
	Disk Usage (%)
	Disk Throughput
	Disk Rates
	Disk Latency
	Disk Request Size
	Disk Queue Size
	Disk Utilization
	Network Traffic

	Definitions of alert metrics
	Commonly watched alert metrics
	Advanced Cassandra alert metrics
	Advanced column family alert metrics
	Advanced system alert metrics
	Linux metrics
	Windows metrics
	Mac OSX metrics

	Managing backups and restoring from backups
	Scheduling a backup
	Restoring from a backup

	Data modeling in OpsCenter
	Keyspace operations
	Creating a keyspace
	Managing keyspaces

	Column family management
	Creating a dynamic column family
	Managing column families

	Browsing the database

	Upgrading OpsCenter
	Upgrading package installations
	Upgrading tarball installations
	Upgrading OpsCenter agents
	From tarballs

	OpsCenter reference
	OpsCenter and OpsCenter agent ports
	Debian and Ubuntu Package install locations
	CentOS, OEL, and RHEL Package install locations
	Binary Tarball distribution install locations

	OpsCenter API
	Authentication
	OpsCenter Configuration
	Getting Existing OpsCenter Cluster Configurations
	Adding, Updating, and Removing Configured Clusters

	Managing Cluster Configurations
	cassandra.yaml Configuration
	DSE Node Types

	Retrieving Cluster and Node Information
	Cluster Properties
	Node Properties
	Storage Capacity

	Performing Cluster Operations
	Node Administration Methods
	Process Management Methods
	Cluster Rebalancing Methods
	Request Management Methods

	Managing Keyspaces and Column Families
	Keyspace Management Methods
	Column Family Management Methods

	Retrieving Metric Data
	Filtering the Metric Data Output
	Metrics Attribute Key Lists
	Cluster Metrics Keys
	Column Family Metrics Keys
	Operating System Metrics Keys

	Managing Events and Alerts
	Event Methods
	Alert Methods

	Snapshot Management and Restoring from Snapshots
	Managing Snapshot Job Schedules
	Managing Snapshots
	Restoring from Snapshots

	Hadoop Status
	Job Details

	Provisioning New Nodes and Clusters
	Provisioning on Prepared Servers
	Provisioning with New EC2 Instances

	Troubleshooting
	Internet Explorer browser is not supported
	Provisioning
	General Troubleshooting Steps
	Invalid Repository Credentials
	Debian
	RHEL

	Timed out waiting for Cassandra to start
	The following packages are already installed
	Agents cannot connect to opscenterd

	Cannot create a keyspace
	Error exceptions.ImportError:libssl.so.0.9.8 displayed
	Python used to run OpsCenter not built with SSL
	OpsCenter agent port setting conflict
	Limiting the metrics collected by OpsCenter
	Java not installed or JAVA_HOME environment variable not set
	Insufficient user resource limits errors

	Release notes
	OpsCenter 3.1.1
	Resolved issues

	OpsCenter 3.1
	Features
	Resolved issues

	OpsCenter 3.0.2
	Resolved issues

	OpsCenter 3.0
	What's new
	Resolved issues

	OpsCenter 2.1.3
	What's new
	Resolved issues

	OpsCenter 2.1.2
	What's new
	Resolved issues

	OpsCenter 2.1
	What's new

	OpsCenter 2.0
	What's new
	Resolved issues

	Sending us feedback

